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ABSTRACT

This thesis presents the design, implementation and evaluation of

two abstracted programming and communication interfaces for devel-

oping distributed programs on a network of Transputers. One inter-

face uses a shared memory model for interprocess communication and

synchronization. The other interface uses a message passing model

for communication and synchronization. The programming interfaces

allow development of distributed programs that are independent of

the physical configuration of a network. This thesis also presents an

evaluation of Transputer performance with a particular emphasis on

the interaction of computation and inter-Transputer communication.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in

this research may not have been exercised for all cases of interest.

While every effort has been made within the time available to ensure

that the programs are free of computational and logic errors, they

cannot be considered validated. Any application of these programs

without additional verification is at the risk of the user. 1

Many terms used in this thesis are registered trademarks of

commercial products. Rather than attempting to cite each individual

occurrence of a trademark, all registered trademarks appearing in this P

thesis are listed below the firm holding the trademark:

INMOS Limited, Bristol, United Kingdom:
Transputer
OCCAM
IMS T414
IMS T800
Transputer Development System (TDS)

Relational Technology Inc., Alameda, California:
Ingres
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I. INTRODUCTION

A BACKGROUND

The Aegis Modeling Project in the Computer Science Department

at the Naval Postgraduate School is engaged in researching advanced

computer architectures for potential future application aboard naval

ships. Currently, this research is centered on the application and

evaluation of distributed computing architectures. A distributed

architecture is particularly suited for shipboard applications. Ship-

board locations at which processing capabilities are required are

physically distributed, yet processors at all locations must cooperate to

monitor and control a ship's sensors and systems. Such an architec-

ture can also provide the necessary characteristics of high perfor-

mance, fault tolerance, and extensibility.

One emphasis of the current research has been to investigate sys-

tems that are composed of relatively low cost, "off-the-shelf" compo-

nents. The single chip microprocessor is such a component. A range

of microprocessor-based distributed multicomputer systems are,

therefore, being evaluated. One such system already developed and

evaluated uses clusters of microprocessor-based single-board comput-

ers interconnected by a hierarchical bus structure [Ga86]. A dis-

tributed system architecture now being evaluated is based on the

single chip microprocessor known as the Transputer.

0



B. THE TRANSPUTER

.. The Transputer is a single chip microprocessor that has been

specifically designed to function as a computing element in a dis-

tributed multicomputer system.-,,The name "Transputer" is an amal-

gam of the words transistor and computer. As the transistor was a

building block for large and varied electronic circuits, the Transputer

is intended by the manufacturer to be an analogous building block for

distributed computing systems.TD

--To facilitate the use of the Transputer as an element in a dis-

tributed system, the Transputer implements the concept of Commu-

nicating Sequential Processes q',-frOI: Communicating Sequential

Processes is a paradigm which defines and describes the interaction of

programs that execute in parallel (as is the case in a distributed
sy stem ). r.- -i • c _{ z . .- ,, ,- .

C ABSTRACT PROGRAMMING INTERFACES

Program development for a network of Transputers is currently

closely tied to the particular physical configuration of a given network.

The physical configuration of a network must be considered early and

throughout the software design process. In certain cases, the configu-

ration can actually dictate aspects of software design. This thesis

investigates isolating the software designer from this physical configu-

ration through the use of an abstract programming interface.

I- ., d 
:. 

, . -. I ,
I
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D. AVAILABLE HARDWARE AND SOFTWARE

The Transputer hardware available to the Aegis Modeling Project

is varied. The hardware includes Transputer interface cards for per-

sonal computers, Transputer-based serial interface and color graphics

interface cards, and cards with multiple Transputers. Aspects of this

hardware that pertain to portions of this thesis are discused where

applicable. A complete description of the hardware is available

elsewhere [In861.

Programs included in this thesis were developed using the Trans-

puter Development System(TDS) [In87al and the OCCAM program-

ming language [PoMa871. OCCAM is a high-level block-structured lan-

guage which includes constructs based on CSP to support program-

ming in a distributed environment. An assembler and Pascal and C

compilers for the Transputer are also available.

E. THESIS ORGANIZATION

*Chapter II describes the Transputer and the basic concept of

Communicating Sequential Processes.

This thesis investigates the basic performance characteristics of a

Transputer as an element in a network of Transputers. Chapter III

describes testing that was performed and documents the results of

this testing.

Chapter IV and Chapter V describe and evaluate two different

prototype abstract programming interfaces developed for a network of

Transputers. One interface is based on a virtual globally shared mem-

ory. The other is based on message passing.

3
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Chapter VI presents the conclusions reached as a result of devel-

oping, using, and evaluating the programming interfaces. Recommen- ,
dations for further research are also provided in Chapter VI. ,

a.¢
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II. THE TRANSPUTER

A OVERVIEW 'N

Central to the to the Transputer is the concept of Communicating

Sequential Processes (CSP) [Ho79]. The Transputer is, in fact, a hard-

ware implementation of this concept. The programming language

OCCAM, which is the primary language used for programming the

Transputer, is based on this concept. A summary of CSP is presented

in this chapter.

To effectively evaluate and use the Transputer requires an under-

standing of how the Transputer implements the concept of CSP. In

addition, in many cases this thesis refers to Transputer architectural

features and details. This chapter, therefore, also presents a brief

description of Transputer architecture.

IL COMMUNICATING SEQUENTIAL PROCESSES

Communicating Sequential Processes (CSP) is one model for con-

current or parallel programming. In CSP, a program is composed of

processes. A process consists of a list of commands or instructions

that are to be executed in sequence. The different processes within a

program are combined and specified to be executed in sequence or in

parallel or in some sequential/parallel combination. The data spaces

for any processes executed in parallel are constrained to be disjoint.

This requirement for parallel processes to have disjoint data

spaces precludes using shared memory to communicate between the

5U



processes. To provide for necessary process-to-process communica-

tion, CSP instead utilizes message passing. Messages are passed

between any pair of parallel processes via synchronous, unbuffered,

point-to-point communications channels connected between the

processes. These communication channels also provide the means for

synchronizing processes. To communicate between two processes,

one process must include an instruction for performing an output to

the other process and the other process must include a corresponding

input instruction. Both processes must be at that point in their

instruction execution where the communication is specified to occur

(If one process reaches this point first, it waits for the other process

to reach its point of communication). The communication is then

performed. Since the communication only occurs when both process

are at their points of communication, the processes are synchronized

at these points. In addition. CSP includes constructs for program

control and sequencing and for conditional selection between multiple

communications.

Figure 2.1 depicts a set of processes (represented as circles)

interconnected by point-to-point communications links (represented

as directed lines). This set of processes would operate independently

and in parallel on a continuous stream of input values to produce a

continuous stream of output values.

6



Processes to Calculate Unity Based on the Formula

Figure 2. 1. Process Representation Examnie

Groups of processes may be logically aggregated to form larger.

more abstracted process constructs. Figure 2.2 shows one possible

abstraction of a subset of the processes shown in Figure 2.1.

Processes to Calculate Unity Based on the Formulae

sin n~cs

COS

.... .. .. ..

Figure 2.2. Process Abstraction Examnie

7
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C TRANSPUTER ARCHITECTURE

A block diagram of a typical Transputer is shown in Figure 2.3.

This figure depicts the major architectural components a Transputer.

The following sections give a brief description of each of these com-

ponents. In particular, these sections point out some architectural

aspects of the Transputer that can influence the performance of pro-

grams written for the Transputer.

Several versions of the Transputer are currently available. This

thesis considers only Transputer types T414 and T800. For this rea-

son, the following sections describe the features of these Transputer

types. A complete description of all currently available Transputers

can be found elsewhere [In87b].

1. Pr0cessor

In general, the processor consists of a 32-bit integer arith-

metic unit and a set of 32-bit registers. Figure 2.4 shows a block dia-

gram of the processor. The I or instruction register points to the next

instruction to be executed in a process. The W or workspace register

is a pointer to the beginning of an area in memory that is the data

space for a process. Together, these two registers can be thought of

as representing the instructions and the data for a single process. The

A, B, and C registers form a push-down evaluation stack. In general,

all operations are performed on or using the values in these registers.

For example, the load and store operations load and store the value of

the A register. The add operation adds the values of the A and B

registers leaving the result in the A register.

8
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0 Register

Micro-Coded
ISequence

A Register Controller
B Register

~C Register

.._ 32-bit Integer
I Register Arithmetic

W Register Logic Unit

Figure 2.4. Processor Block Diagram

a. Instruction Set

Each byte in a program can be viewed as having a four-bit

high-order half and a four-bit low-order half. The low-order half of an

instruction byte contains a data value. The high-order half contains a

function code. To execute such an instruction, the data value half of

the instruction byte is loaded into the operand register and the func

tion encoded in the other half of the instruction byte is performed. At

this point, it would appear that this instruction format limits operand

values to the range of 0 to 15 and that only 16 different functions

could be performed. A means is provided, however, for representing

larger data values and for encoding a greater number of functions. The

0 or operand register is used to form operands and multi-byte

instructions from a sequence bytes. For data values represented by

10



more than four bits, special function codes cause individual four bit

"pieces" of the data value to be extracted from a series of instruction

bytes and accumulated in the operand register. The last function code

in this series of instruction bytes will actually operate on the accumu-

lated data value. Figure 2.5 shows an example of this operand forma-

tion process.

Example Adds $5A9 to Register A Instruction

Bytes

(adc #$5A9)

Function Data
Codes J Values

Rfegister O0 000 0 7-6j--j 5,,

0 Register 0 0 0 0 0 00

0Register 0 0 0 0 0 , 5

A Register o o :o 0 B 4 1 737

}S

ORegister 000 000 05 A 0

A Register 00 0 :0 8 B4 1 3

ORegister I 0 L 0 0 0 :Qj 5iA

Figure 2.5. Example of Operand Register "eration

-%,--11..

• ?" p



To encode functions with value representations greater

than four bits, the value representing such a function is loaded into the

operand register in the same manner as if it were data. A special

function code then causes the value in the operand register to be exe-

cuted as an instruction. Using this instruction formatting scheme, the

instruction set has been optimized so that the most frequently used

operations are encoded using only a single byte. Measurements show

that about 70% of the instructions actually executed in a typical pro-

gram are, in fact, encoded using only a single byte [In87c]. Having

most instructions represented as single bytes not only reduces the

memory requirements for program code but tends to improve pro-

gram performance. This is because, since fewer bytes are fetched per

instruction executed, fewer memory accesses will be required to exe-

cute the program.

This method of encoding instructions has other effects

on processor performance. Each byte of a multi-byte instruction takes

one processor clock cycle to load into the operand register for assem-

bly o ", instruction or its operand. Because of this, instructions with

a grL r byte length take more time to assemble before they can be

executed. In most cases, the length of an instruction is fixed. How-

ever, in some cases, the length of an instruction is dependent on the

value or location of the instruction's operand. Since these factors can

be controlled by the programmer, it is useful to be aware of these

types of instructions. For example, data values located in the first 16

locations above the base of the processor workspace require only one

12



instruction byte to be accessed. Data values located elsewhere require

additional instruction bytes, which increases the time required to

access these data values. Because of this, frequently accessed data val-

ues should be located closest to the base of the workspace. Also,

loading a constant takes one instruction byte for each four bits of the

constant's length. This means that loading a 32-bit constant takes

eight processor clock cycles. If such a constant is to be used

repeatedly, it is often more efficient to name and store the constant as

a data value and use that data value instead.

b. Concurrency

A single Transputer directly supports running concur-

rent processes. These processes may be either of two priority levels: t

high or low. To facilitate implementation of concurrency and prioriti-

zation, the Transputer has a micro-coded process scheduler. The

operations performed by this scheduler can be examined based on

whether a process is active or inactive. An inactive process is one that

is waiting on communication or on a programmed time delay

(operations for inactive processes are discussed later in this chapter).

An active process is one that is not waiting and is ready to execute.

To manage the active processes, the process scheduler

maintains a separate linked list of active processes for each priority

level. Instructions are included in the instruction set for starting new

processes by adding the process to an active process list. Processes

are selected for execution from these active process lists based on the

following generalized rules: %
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High-priority processes are always executed in preference to low-
priority processes. If a low-priority process is executing when a
high-priority process is added to the high-priority active process
list, the low-priority process is preempted and the high-priority
process is executed. A high-priority process is executed until it
completes or until it must wait for communication or for a pro-
grammed time delay.

" When no high-priority processes are available for execution, a low-
priority process may be executed. A low-priority processes is
executed until it must wait for communication or for a pro-
grammed time delay. In addition, to ensure that one low-priority
process does not monopolize the processor, a low-priority pro-
cess that has been executing for more than about one millisecond
is suspended. The suspended process is placed at the end of the
low-priority active process list and the process at the beginning of
the low-priority active process list is then executed.

2. Floatin Point Unit

One version of the Transputer includes hardware for per-

forming floating point arithmetic operations. Internally, the floating

point unit includes a three-register floating-point evaluation stack that

operates in the same manner as the "normal" or integer processor's

evaluation stack. The floating-point unit operates in parallel with the

other components of the Transputer. Floating-point operations may,

therefore, be performed in the floating-point unit at the same time

that integer calculations are being performed in the integer processor.

Currently, only the Transputer model T800 includes this floating-

point unit.

3. Links

The hardware links provide the means for implementing CSP

communication channels between processes executing on different

Transputers. A link from one Transputer is connected to a link on

another Transputer to provide a bidirectional pair of communications

14
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channels. Each hardware link can perform simultaneous, independent

input and output communication. Instructions are included in the

Transputer's instruction set for performing input and output opera-

tions using the links. A block diagram of a communications link is

shown in Figure 2.6. Each communications link consists of an inde-

pendent direct memory access controller and serial communication

logic.

.. MsAgeL to Controller

Message Length

RegisterM essSerial Input

Resume ProcessControllerPointer .....

Figure 2.6. Hardware Communication Link Logical Block Diagram

To perform a communication via a hardware link, the com-

munication link address and the size and location of a message are

specified, then the communications instruction is executed. This ini-

tializes the direct memory access controller with the size and location

of the message to be communicated. The process executing the

15



communication instruction is suspended and a pointer for later

resuming the process is saved (another ready process from an active

process list may then be executed). When both the sending and

receiving links have been initialized in this manner, the message

communication is accomplished. When the communication is com-

plete, the process which was suspended for communication is added

to the end of the appropriate high- or low-priority active process list

to wait its turn for execution.

Messages are transmitted by the links one byte at a time in a

bit-serial format. After a receiver has recognized the reception of a

byte and is capable of receiving another byte, the receiver transmits an

acknowledge message. The transmitter will await reception of the

acknowledge message before transmitting the next message byte.

Since the link hardware performs no error checking on messages, the

purpose of the acknowledge message is solely to control the flow of

message bytes between the links. Figure 2.7 shows a formatted mes-

sage byte and an acknowledge message.

Data Packet

4. 1 10

2 Start Bits 8 Data Bits Stop Bit

Acknowledge Packet

Figure 2.7. Serial Communication Link Protocol F,
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A method for communicating between processes executing

on the same Transputer is also provided. To perform such a commu-

nication, a memory address and the size and location of a message are

specified, then the communications instruction is executed (note that

this is the same sequence required to initiate communication via a

link). When both the sending and receiving processes are ready to

communicate, the communication is accomplished by performing a

memory-to-memory transfer of the message data.

4. Memory

The Transputer can address four gigabytes of memory. This

memory space is divided into two non-overlapping segments: an

internal or on-chip segment of memory and an external or off-chip

segment of memory. Although these two segments of memory are

logically the same, the physical characteristics of the two segments

are quite different.

The on-chip memory consists of up to four kilobytes of static

random access memory (depending on the type of Transputer being

considered). Within the address space, the on-chip memory occupies

the lowest block of addresses. The on-chip memory can be accessed

for read or write via the internal processor bus in one processor clock

cycle.

The off-chip memory forms the balance of the address space.

The off-chip memory is accessed via an external memory interface.

This external memory interface provides access to the external mem-

ory by multiplexing a 32-bit address and 32 bits of data onto a single

17



32-bit external bus. The timing for this multiplexing slows access to

the external bus to a minimum access time of three processor clock

cycles. The actual number of cycles required to access external mem-

ory is also dependent on the requirements of the external memory

devices. For the Transputer systems available in our laboratory, the

external memory access times range from three to five processor

clock cycles. This difference in access times between the "fast" on-

chip and "slow" off-chip memory can affect program performance.

Frequently accessed variables or code segments should, therefore, be

preferentially located in the "fast" on-chip .Lemory.

Additionally, the external memory interface includes control ,n

logic for refreshing external dynamic random access memory devices.

Control lines and signals are also provided to facilitate peripheral

device direct memory access to the external segment of memory.

5. Timers

The Transputer provides two hardware timers. Each of these

timers can be viewed as free-running 32-bit binary counters. One of

the timers is accessible to high-priority processes: the other timer is ell

accessible to low-priority processes. The high-priority timer incre-

ments at intervals of one gsecond, for a total cycle time of about 72

minutes. The low-priority timer increments at intervals of 64

pLseconds, for a total cycle time of about 76 hours.

Instructions are provided for initializing the value of these

timers and for reading the current value of a timer. An instruction is

also provided for suspending execution of a process until a speck..ed

18



timer value is reached. To implement this instruction, the Transputer

maintains a linked list of suspended processes waiting on timer values.

Separate lists are maintained for the high- and low-priority timers.

These lists are ordered by the specified "wait-until" time value. The

first "wait-until" time value in each list is loaded into a dedicated reg-

ister and, using hardware, is compared with the current value of the

high- or low-priority timer. When the "wait-until" timer value is

reached, the suspended process is removed from the timer list and is

added to the end of the appropriate active process list to wait its turn

for execution. The next timer list entry is then loaded for comparison.

6. External Event Input

The external event input on the Transputer is similar to an

external interrupt input. To the Transputer, this external event input

appears as a communications channel which is capable of transmitting

a signal to a user's program. A user's program requesting input from

the external event channel will be suspended if the external event

input is not being asserted. Then, when the external event input is

asserted, the process will be added to the end of an active process list

to wait its turn for execution. Either a high- or a low-priority process

may request input from the external event channel.

19
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III. TRANSPUTER PERFORMANCE

A OVERVIEW

As has been described in the previous chapter, the Transputer is a

complex microprocessor. Because of this complexity, the perfor-

mance of even a single Transputer can be affected by many factors.

Such factors might include whether or not the program and/or

associated data is in on-chip or off-chip memory or if there is internal

bus contention resulting from external communications link direct

memory access. When considering a network of Transputers, the fac-

tors that can affect overall network performance are multiplied con-

siderably.

Developing efficient Transputer-based systems in the face of this

complexity requires a firm understanding of Transputer performance

and the manner in which different factors influence that performance.

Evaluating Transputer-based systems requires accurate methods for

measuring the performance of individual and networked Transputers.

To begin to understand Transputer performance characteristics

and to gain experience in measuring individual and networked Trans-

puter performance, a series of timing and performance studies was

conducted.

B. PRIOR RESEARCH

INMOS provides basic performance specifications for the

Transputer [n87b and 1n87d]. The basic specifications list the
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performance for individual machine-level and high-level language

operations. The listed specifications consider the effects of some of

the factors that can potentially affect performance. While it is

expected that the manufacturer's performance specifications are

accurate, it is necessary to independently confirm this.

Prior theses [Va87 and Ha87] document some detailed tests and

analyses of Transputer performance. These theses point out, however,

that some aspects of their performance test results do not appear to

be consistent or cannot adequately be explained. They suggest that

further research be performed in this area to resolve the identified

problems and to extend the scope of performance testing.

C TEST METHODOLOGY

This chapter documents the suggested further timing research

and documents the results of an initial set of timing tests on the

recently released T800 20 MHz Transputer. Two major categories of

testing are addressed. The first category is testing to confirm the

basic manufacturer's performance specifications for the Transputer.

The second category is testing to determine the interaction that exists

between the operation of the central processing unit and communica-

tion link direct memory access activity. •

1. Configuration -.

To accomplish both types of testing, a single test configura-

tion was developed. The test configuration consists of a central •

"target" Transputer and four "satellite" Transputers, each attached to

the target Transputer by a communications link. In addition, there
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are associated Transputers which perform the functions of control and

of data routing and recording. A logical diagram of this test configura-

tion is presented in Figure 3.1. A detailed diagram of the test set-up is

presented in Appendix A.

.

/"D at Satellite
ColcinProcessor --lie

Processor Processor Processor

Host System,*'

Figure 3.1. Logical Dia-ram of Test Configuration

Although based on and quite similar to a previously used test

configuration [Ha871. there is a subtle but significant difference

between the two test configurations. In the prior test configuration.

one of the satellites was the Transputer inst .'led in the host develop-

ment system. User programs executed on the Transputer in the host

development system are run from within the Transputer Development

System (TDS) "shell."

".
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After some initial experimentation, it became apparent that,
in some way, this shell affectea the timing of programs run from

within the shell. The timing of programs running on Transputers

external to the shell but depending on communications to or from a

program run from within the shell also appeared to be affected. It is

postulated that some shell processes are active while the user pro-

gram is executing and, to an extent, interfere with the user program.

References to such processes can be found in [In87a].

Although it may be of interest to research this aspect of TDS

in the future, it is sufficient for the purposes of the current timing

tests to simply ensure that all timing measurements are performed

external to and independent of the host development system

Transputer.

2. Software

In general, the target Transputer performed some calculation

in a loop while the satellite Transputers placed different link input

and output communications loads on the target Transputer. The test

software monitored the time required to perform link communica-

tions and the number of calculation loops that could be performed

during those communications. Appendix A provides a listing of the

programs used to measure and record processor performance.

3. Conditions

Because so many factors can interact and affect Transputer

performance, it was necessary to set and hold some test conditions

fixed so that the effects of variations in parameters of interest could be

23
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properly interpreted. Constant for the tests documented by this

thesis were:

* T414 Transputer processor speed was 15 MHz.

" T800 Transputer processor speed was 20 MHz.

* Communications link speed was fixed at 20 megabits per second
for both Transputer types.

* Program code and scalar variable values in the calculation loop
were located in the "fast" on-chip memory for both Transputer
types.

* Scalar variables in the calculation loop were in "local" scope (i.e.,
within the first 16 bytes of the bottom of the workspace and
accessible by single byte load and store instructions).

" Memory-to-memory transfer blocks were located in "slow" off-
chip memory for both Transputer types.

" Communications data blocks were fixed at 100,000 bytes. r

Because this block size is much greater than the size of the on-
chip memory, the block was located in "slow" off-chip memory
for both Transputer types.

" Communications processes were run at high priority and the cal-
culation loop was run at low priority.

* Time measurements were taken in the each Transputer using the

high-priority one-ptsecond resolution timer.

The effects of varying certain parameters of interest were

investigated. The following list identifies the parameters of interest

and the manner in which they were varied.

The characteristics of the target Transputer calculation loop were
varied by placing different types and numbers of operations within
the loop. The operations used within the loop were no operation,
assignment, addition, subtraction, multiplication, division, and
100- and 1000-byte memory-to-memory transfers. The number
of individual operations of a type in a loop ranged from 0 to 4
operations per loop.
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Communications conditions were varied by changing the number
of links that were active at one time. Additionally, the communi-
cations conditions were varied by changing the size of a commu-
nications packet. The number of active communications links
ranged from 0 to 4 input links active and from 0 to 4 output links
active. The individual data packet size was varied in 16 steps
from one byte per packet to 100,000 bytes per packet with an
overall constant data block size of 100,000 bytes.

4. Data Management

From the number of possible combinations of test conditions,

it was clear quite early that these timing tests would generate a large

amount of test data. To more effectively handle this test data, it was 0

decided to record the data in some database management system.

Using a database management system provided for ease of access to

selected aspects of the data. Additionally, since the potential exists

for performing further timing tests, such a system will facilitate the

incorporation and aggregation of any future timing data.

Since the Ingres relational database management system was

readily available on the departmental mini-computer, this system was

selected for use. To facilitate loading of the timing database, condi-

tions for a particular timing test and the test results were directed to

a disk file on the host development system, then electronically trans-

ferred to the departmental mini-computer for loading into the Ingres

timing database. Appendix B describes the Ingres database created for

the timing data and gives some examples of accessing timing informa-

tion from the database.

%
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D. TEST RESULTS

Test runs covering the range of conditions described previously . -

were cunipleLed and the resulting data was loaded into the Ingres

timing test database. Data was extracted from this database to "view"

several aspects of Transputer performance. These aspects of perfor-

mance are:

1. Isolated Processor Performance

The first view of the timing results is to compare measured

instruction execution times with the manufacturer's specified instruc-

tion times for a selected subset of Transputer instructions. This is

intended as a confirmation of the manufacturer's stated execution

times. Additionally, if the timing results are consistent with the man-

ufacturer's specifications, it will tend to validate the timing test

methodology that is being used.

Determining the manufacturer's specified execution time for

a selected loop operation requires that the operation be examined at

the machine-language level. Using a disassembler [Br871 to facilitate

examination of the timing program object code, each of the selected

operations was decomposed into its machine-level components. The

manufacturer-specified number of processor clock cycles for each of

these components of an operation was summed, then multiplied by I

the period of the processor clock. The result of this calculation is the

expected execution time for a particular loop operation executed in

on-chip memory. For example, the expected execution time for the tv

multiply operation is determined as follows:

A
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Multiply Operation: 4

a := b * c

Machine-Language Equivalent Multiply Operation:

ldl c (2 cycles)

pfix; mult (1 + 38 cycles)

stl a (1 cycle)

Execution Time Calculation (T800 @ 20 MHz):

0.050 tsec
44 cycles x cycle 2.200 tsec

Note that execution of instructions in "slow" off-chip memory

affects the calculation of expected execution times. To determine the

expected time for such an off-chip operation, the same basic method

described above is used, except that a separate accounting of on-chip ,

and off-chip cycle counts is maintained. The off-chip cycle count is

then multiplied by a hardware-dependent scale factor. This scale fac-

tor is the number of processor cycles required to make a single access

to the off-chip memory. In the case of the hardware used for these

timing tests, this scale factor is 4 for the T414 Transputer and 5 for

the T800 Transputer.

In addition, in the particular hardware configuration used for

these timing tests, off-chip memory consisted of dynamic random

access memory devices. Such devices must periodically be ..

"refreshed" to maintain their data. Although this refresh operation is

relatively fast and is handled automatically by the Transputer
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hardware, access to the off-chip memory is restricted during a short

period of time. In the worst case, this increases the average time

required to access off-chip memory by a factor of 1.0237 for the T414

Transputer and 1.0213 for the T800 Transputer [In87b]. The worst-

case overall time for an off-chip operation is, then, the sum of the on-

chip time and the scaled and "refresh delayed" off-chip time. An

example calculation for execution of an off-chip memory-to-memory

transfer follows:

Memory-to-Memory Transfer Operation:

[array FROM 0 FOR 10001 := [array FROM 0 FOR 10001

Machine Language Equivalent Operation:

pfix; pfix; ldc #$800 (1 + I + 1 cycles)

pfix; mint (1 + 1 cycles)
wsub (2 cycles)

stl temp (1 cycle)
pfix; pfix; ldc #$800 (1 + 1 + 1 cycles)

pfix; mint (1 + 1 cycles)

wsub (2 cycles)
ldl temp (2 cycles)

pfix; pfix; ldc #$3E8 (1 + 1 + 1 cycles)

pfix; move (1 + 8 cycles maximum

500 off-chip cycles)

Execution Time Calculation (T414 15 MHz):

0.067 tsec,,
29 cycles x cycle - 1.933 tsec
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0.067 tsec

500 cycles cycle x (4 x 1.0237) off-chip = 136.493 .isec

1.933 ptsec + 136.493 gsec = 138.426 gtsec maximum

Measured execution times for different operations were

derived from the timing data as follows:

* Consider only timing data where no external communication links
were active.

" Calculate the average time per loop for a test set with no opera-
tions in the loop. (The average loop time is simply the time of
measurement divided by the number of loops executed during
that time.)

* Extract the average time per loop for a test set with 1, 2, 3, and 4
instances of a selected operation in the loop.

* Subtract the no-operation loop time from each of the selected
operation loop times. These loop times have now been "adjusted"
to remove any loop overhead time.

" The incremental increase in adjusted loop times for the selected
operation loops is the expected time required to perform a single
operation.

Tables 3.1 and 3.2 list the expected and measured execution

times for the selected loop operations. These results show that,

except for the divide operation, the measured results are consistent

with the expected results. The expected time for the divide operation

is based on the operation taking 39 processor clock cycles [In87d].

The measured results indicate that the divide operation takes 38 pro-

cessor clock cycles. Subsequent to performing the timing tests, it was

confirmed with the manufacturer that the divide operation, in fact,

takes 38 clock cycles as measured in the timing tests [Pe88].
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TABLE 3.1

T414 EXPECTED AND MEASURED
INSTRUCTION EXECUTION TIMES

Operation Operations Test J Loops Loop rMeasured Calculated
per Duration During Time I Op Time Op Time

Loop (p.sec) Test (sec/Loop)I (4sec) (ptsec)

Null Loop 0 1000014 214153 4.67
Assignment 1 1000013 205352 4.87 0.20 0.200

2 1000014 197246 5.07 0.20
3 1000011 189755 5.27 0.20
4 1000012 182813 5.47 0.20

Addition 1 1000013 197246 5.07 0.40 0.400
2 1000012 182813 5.47 0.40
3 1000014 170349 5.87 0.40
4 1000011 159475 6.27 0.40

Subtraction 1 1000013 197246 5.07 0.40 0.400
2 1000012 182813 5.47 0.40
3 1000015 170349 5.87 0.40
4 1000011 159475 6.27 0.40

Multiplication 1 1000011 131497 7.61 2.94 2.933
2 1000016 94878 10.54 2.94
3 1000022 74212 13.48 2.94
4 1000017 60938 16.41 2.94

Division 1 1000013 129230 7.74 3.07 3.133
2 1000012 92535 10.81 3.07
3 1000018 72071 13.88 3.07
4 1000022 59019 16.94 3.07

Block Move 1 1000030 50711 19.72 15.05 15.516
(100 Bytes) 2 1000036 28773 34.76 15.04 (maximum)

3 1000042 20077 49.81 15.05
4 1000074 15433 64.80 15.03

Block Move 1 1000117 7007 142.73 138.06 138.426
(1000 Bytes) 2 1000100 3562 280.77 138.05 (maximum)

3 1000056 2388 418.78 138.04
4 1000066 1796 556.83 138.04,
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TABLE 3.2

T800 EXPECTED AND MEASURED

INSTRUCTION EXECUTION TIMES

Operation Oprations Tet Loops Loop Measuer Calculate1
per Duration During Time Op Time Op Time

____ Loop_ _ (4tsec) Test I( Lsec/Loop) (}gsec) (p.sec)

Null Loop 0 1000009 285581 3.50
Assignment 1 1000010 273845 3.65 0.15 0.150

2 1000008 263035 3.80 0.15
3 1000009 253038 3.95 0.15
4 1000010 243789 4.10 0.15

Addition 1 1000008 263035 3.80 0.30 0.300
2 1000011 243789 4.10 0.30
3 1000010 227167 4.40 0.30
4 1000011 212667 4.70 0.30

Subtraction 1 1000009 263035 3.80 0.30 0.300
2 1000010 243789 4.10 0.30
3 1000011 227167 4.40 0.30
4 1000010 212667 4.70 0.30

Multiplication 1 1000011 175357 5.70 2.20 2.200
2 1000015 126524 7.90 2.20
3 1000012 98964 10.11 2.20
4 1000010 81263 12.31 2.20

Division 1 1000013 172334 5.80 2.30 2.35G
2 1000015 123400 8.10 2.30
3 1000009 96109 10.41 2.30
4 1000016 78704 12.71 2.30

Block Move 1 1000013 57789 17.31 13.80 14.166
(100 Bytes) 2 1000009 32118 31.14 13.82 (maximum)

3 1000044 22262 44.92 13.81
4 1000036 17037 58.70 13.80

Block Move 1 1000012 7558 132.31 128.81 129.110
(1000 Bytes) 2 1000099 3830 261.12 128.81 (maximum)

3 1000100 2565 389.90 128.80
4 1000524 1930 518.41 128.73 1 _

2. Isolated Communications Link Performance

The Transputer manufacturer also provides specifications for

communications link performance [1n87b and 1n87c]. The measured
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performance of a communications link can also be calculated from

timing test data. Measured communications link performance is cal- 6

culated by dividing the size of the largest single data block communi-

cated over a single link by the time required for the communication.

The largest block size was selected to minimize the affects of any

communications set-up overhead that might exist. For the timing

tests performed, the largest block size was 100,000 bytes. The speci-

fied and measured communications data rates are compared in Table

3.3. This table shows that the specified and measured data rates are

consistent.

TABLE 3.3

ISOLATED COMMUNICATION LINK PERFORMANCE

Pocessor ICommnunication Specified Rate IMeasured Rate
Type Mode (Kbytes/sec) (Kbytes/sec)

Input 800 T 759
T414 Output 800 762 -

]Input/Output 1600 1505 N

Input 1740 1738
T800 Output 1740 1737

Input/Output 2350 2344

Of particular interest here is the bidirectional data rate for

the T800 Transputer. For the T414 Transputer, the bidirectional data

rate is approximately 2 times the unidirectional data rate. For the

T800, however, the bidirectional data rate is only about 1.35 times the

unidirectional data rate. Since in the worst case of the external off-

chip memory the proccssor bus data rate is at least 20 megabytes per
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second, accessing data from memory should not limit link perfor-

mance. Taking a closer look at the link communications protocol

provides the key to understanding this problem.

In unidirectional communication for the T800, the acknowl-

edge packet from the receiving Transputer is returned to the trans-

mitting Transputer before the transmitter completes its transmission.

Because of this, the transmitter is able to transmit bytes "head-to-tail"

without any intervening delays. This results in a maximum theoretical

unidirectional data rate of

20 Mbits 1 byte 1.82 Mbytes
sec 11 bits transmitted - sec

which is consistent with the actual unidirectional link data rate. In

bidirectional communications, however, each Transputer must

"sandwich" acknowledge packets between data packets. This

increases the total number of bits transmitted by a Transputer per ,

data byte from 11 to 13 and results in a maximum theoretical bidirec-

tional data rate of

20 Mbits 1 byte 3.08 Mbytes
sec 13 bits transmitted 2 = s

This is less than double the unidirectional rate. Additionally,

because a receiving Transputer is also transmitting its own data, it may

not immediately be able to return an acknowledge packet for data

received. The transmitter may, therefore, be delayed in transmitting

its next data byte, further reducing the data rate. However, since the
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internal timing threshold requirements of the link hardware are not

known, it is not possible to exactly quantify this effect.
I

Because of this bidirectional link communications limitation, Y

two separate unidirectional communications links between T800

Transputers will provide about a 1.1 megabyte greater bidirectional

communications throughput than will a single communications link

operated bidirectionally.

Since the T414 unidirectional communication rate is signifi-

cantly less than the maximum possible rate for a 20 Mbit/second data

link, space already exists between successive transmitted packets to

"insert" an acknowledge packet for a received data packet. Because of

this, the T414 does not show the prominent bidirectional

communications protocol limitation shown for the T800.

3. Communication Link Interaction

Prior research [Va87] has shown that, for the T414 Trans-

puter, there is minimal interaction between links when multiple links

are operated simultaneously. It was desired to determine whether

this is also a characteristic of the T800 Transputer with its greater

communication link data rates. Figures 3.2 and 3.3 show communica-

tions link performance for both the T414 and the T800 under condi-

tions when multiple links are active. Except for the bidirectional

protocol limitation previously discussed, these figures show that there ,

is minimal interaction when multiple links are being operated. Note

that in Figure 3.2, the number of links active includes both unidirec-

tionally and bidirectionally active links. Because of this, each number
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of active links may include more than one data point. For example,

two links active on Figure 3.2 include the data points for both the case

when two unidirectional links are active and the case when one bidi-

rectional link is active.
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cr . 800, .

600 - -... -

0 0
S400-- - - - - - -
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0

0
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Figure 3.2. T414 Multiole Link Effects on Communicatlons Rate
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Figure 3.3. T800 Multiple Link Effects on Communications Rate
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Additionally, for the T414, it has been shown that individual

data packet size can affect the overall communications data rate

[VA87]. In general, as the data packet size is decreased, the overall

communications data rate also decreases. This is because the over-

head time associated with the set-up of a data transmission is more

significant when the size of the data packet to be communicated is

small. The current test configuration and software was used to extend

the scope of testing to further investigate this phenomenon. The

results of this testing for the T414 and the T800 are shown in Figures

3.4 and 3.5. These graphs, as well as others in this chapter, were

conducted with various numbers of links active. The number of links

active for a particular graph are identified on that graph. Figures 3.4

and 3.5 show that communications throughput decreases rapidly when

the packet size decreases below a threshold point of from about 200

down to 50 bytes per packet.

Further, note the communications characteristics shown in Figure

3.5. This graph shows the protocol limited nature of bidirectional link

operations for the T800 Transputer. Compare the plots for the two

bidirectional links case with those of the four unidirectional links case.
*1*

In either of these cases, a total of four links are operating. As packet

size increases from one byte per packet, the plots for both links are at

first identical. However, as the packet size passes about 20 bytes per

packet, the two plots begin to diverge. The four unidirectional link

case data rate continues to increase but the bidirectional link case

becomes protocol limited and data rate levels off.
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4. Communication Link Effects on Processor Performance

One of the key questions raised about Transputer perfor-

mance has been the extent to which communications link activity

interferes with processor execution speed. There are two ways in

which such interference can occur. First, both the processor and the

communication links contend for access to the same internal data bus.

Secondly, the set-up of a communication and the rescheduling of a

process upon completion of its communication require some proces-

sor overhead. Recalling the timing test methodology, where opera-

tions in a loop were conducted in parallel with a variety communica-

tions load conditions, timing data is available to address this issue.

For the purposes of comparing processor performance, the

average number of loops that were performed per unit time under

each set of test conditions was taken as the relative measure of target

processor performance. For each set of test conditions, processor

performance has been normalized by dividing performance measure-

ments by the "no communication" performance for that set of test

conditions.

Figures 3.6, 3.7, 3.8 and 3.9 present representative results

from this analysis. As can be seen from these figures, processor per-

formance drops dramatically as the communications packet size is

decreased below a certain threshold value. In some cases, perfor-

mance was reduced to the point where the processor made no

progress on its looping calculation; the processor was completely

communications bound.
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In the left-hand region of the performance graphs, where the

individual data packet size is small, the processor overhead associated 0

with the communication is the primary contributor to performance

degradation. As the data packet size is increased, the time associated

with actually transmitting the data packet increases. As the actual

packet transmission time increases, the overhead associated with

communicating a packet becomes less significant. Therefore, when

the packet size is very large, any processor performance degradation

will be due to processor and communications link internal bus con-

tention. Towards the right-hand side of the performance graphs, pro-

cessor performance degradation can be seen asymptotically

approaching this bus contention-only degradation characteristic.

As can be seen by comparing the different performance

graphs, the type of calculation performed within the loop also affects

the amount of performance degradation. Although there is only a

minimal difference in the overhead limited (left-hand) area of the

graph, there is a noticeable difference in the bus contention limited

(right-hand) portion of the graph. In general, the difference in the

bus contention limited area of the graph is directly related to the fre-

quency of memory access required by the calculation loop. For short

instructions (such as assignment) that require frequent bus access, the

performance degradation is greater than for long instructions (such as

division) that require infrequent bus access. Figures 3.10 and 3.11

illustrate this characteristic.
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5. Processor Effects on Communications Link Performance

As a corollary to the question of communications effects on

processor performance. it is reasonable to ask what effect an actively

executing process has on the performance of a communications link.

It might be expected that if the processor is slowed by the effects of

communication link bus contention, a communication link would also

be slowed by the effects of processor bus contention. Data was

extracted from the timing database to determine if such effects did in

fact exist. A typical sample of this data is shown in Table 3.4.

TABLE 3.4

PROCESSOR EFFECTS ON COMMUNICATIONS PERFORMANCE

Data No Calculation With Calculation
Packet Size Data Rate Data Rate

(bytes/packet) (bytes/second/link) (bytes/second/link)

T414 1 23.561 23.561
10 226.078 226.072

100 705.184 701.262
1000 738.460 738.165

10000 742.242 742.975
100000 747.049 740.988

T800 1 31.415 31.415
10 282.415 282.416
100 1120.561 1112.013

1000 1166.943 1165.773
10000 1171.413 1171.097 1

100000 1171.866 1171.646

Table 3.4 shows that the effects of processor activity on
S

communication link performance is not significant. The reason for

this is that, when the communicating process is of an equal or higher
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priority to the executing process, the communication link has priority

access to the data bus [In86e]. The communication link is, therefore,

virtually unaffected by bus contention. Bus arbitration priority was

defined in this manner so that the lower bandwidth communications

links would not be idled [Ha871.

6. Summaz

Through the timing tests that have been performed, it has

been seen that a strong relationship exists between the calculational

performance of the Transputer and the operation of its communica-

tions links. Additionally, the size of individual communications pack-

ets has a pronounced effect on both the calculational and communica-

tions performance of the Transputer. Knowledge of these

characteristics can be used by the software designer to develop more

efficient software.
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IV. SHARED MEMORY MODEL PROGRAMMING INTERFACE

A BACKGROUND

The concept of Communicating Sequential Processes as imple-

mented by the Transputer is one methodology for interprocess com-

munication and synchronization. An alternative concept utilizes

globally shared memory as a means for interprocess communication

and synchronization. A body of software and development experience 0

that makes use of this shared memory concept exists and could be

useful in developing programs for a network of Transputers. In

particular, distributed programs developed in the ADA language

environment use a shared memory model.

In a large network of Transputers, the physical connectivity of the

network is limited by the availability of only four bidirectional commu-

nications links per Transputer. This limited connectivity often

imposes restrictions upon the distributed systems software designer.

The software designer must be aware of and consider the physical

configuration of the network. As a result, the designer must often
V.work around the limitations that the configuration imposes. The use

of a shared memory model in a network of Transputers is one 0

methodology that might be used to isolate the software designer from

these physical configuration limitations.

These factors have motivated the development of prototype soft- 0

ware to implement a shared memory model environment in a network .5
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of Transputers. The purpose of this prototyping effort was to gain

experience in developing such a system for a distributed system. This

chapter describes the design, implementation, and evaluation of this

prototype.

B. EVENT COUNTS AND SEQUENCERS

When multiple processes are sharing a common resource, as in

the case of a shared memory system, some means must be available for

the processes to coordinate or synchronize their use of the resource.

One means for this synchronization is through the use of Event Counts

and Sequencers [ReKa79].

As its name implies, an event count is a value representing the

cumulative total number of events of a particular type that have

occurred in a system. An event count might be used, for example, to

record and monitor the number of times a particular shared memory

location has been written to or modified. Many separate event counts

may be defined in a system for use in monitoring different types of

events.

A sequencer is also a value representing a count. This count is

used to control the sequence in which events occur. Each sequencer

count value can be thought of as a reservation for a process to use a

shared resource. These reservations are issued in sequencer count

order to requesting processes. Processes with reservations are then

permitted access to the controlled resource in sequencer count order.

For example, several processes writing to the same memory location

may use a sequencer to ensure that only one process writes to the
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location at a time. As with event counts, many sequencers may be

defined in a system to control access to different shared resources.

Several primitive operations are defined for event counts and

sequencers. These operations are:

" read(event-count)-The read operation returns the current value
of a specified event count.

" advance(event count)- The advance operation increments the
value of a specified event count.

" await(event count, count_value)-The await operation suspends
the process executing the await command until the value of a
specified event count has at least reached the identified count
value. Note that execution of the suspended process is not neces-
sarily resumed immediately when the specified count value is
reached. The process might not resume until some time after the
count is reached.

* ticket(sequencer)- The ticket operation returns the value of the
next available reservation "slot" for a specified sequencer.

C IMPLEMENTATION

The model of event counts and sequencers was selected as the

paradigm for implementing the prototype shared-memory model.

Since a network of Transputers does not physically share any memory,

the implementation must make use of software to simulate a sharing of
-a0

memory. The core of the implementation is a distributed software

kernel which executes on each node in the network. Figure 4.1

depicts the general physical configuration of a network with this

kernel.

.
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Figure 4. 1. Physical Configuration of Shared Memory Kernel

The kernel contains the system's shared memory and maintains

the system's event count and sequencer values. The system's shared

memory as well as the event count and sequeuicer values are appor-

tioned amongst the kernels operating on different nodes. The kernel

also "hides" the specific physical configuration of the network from

the application program by managing all communications between

program modules and network nodes. Figure 4.2 shows the
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distributed application program's view of the kernel. A detailed

description of the kernel is provided in this section.

... . .....

..... .....
..........

Application

Distributed "idn
Kernel Pyia

Figure 4.2. Logical Configuraflon of Shared Memory Kernel

The prototype implementation also includes a library of proce-

dures for interfacing with the kernel. This library includes the basic

primitive operations defined for event counts and sequencers. In

addition, primitive operations have been defined and included for
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accessing shared memory segments. The procedures in this library

are also listed in this section. I

1. The Kernel

Figure 4.3 shows a logical diagram of the software kernel. As

shown, the kernel consists of three major parts: the input/output

buffers, the communications manager, and the shared memory

manager.

P i

Communicationinput/output iiiiiii!iii" Links !.
iI ~Buffers....

....... ..

Shared Memory '
Manager

Application

iiiii~i~~i:iii:i::ii!iiiiiii iiii:ii !:!:i Program

",

Figure 4.3. Shared Memory Kernel Logical Block Diagram
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a. Input/Output Buffers

A set of input and and a set of output buffers are provided

for the hardware communications links. These buffers decouple the

relatively slow link data transfers from the operation of the kernel.

The buffers enable the kernel to operate in parallel with network data

transfers.

b. Communications Manager

All communications between a kernel and the library

interface procedures and between kernels on different nodes are for-

matted as packets. Two different packet formats are used. One

format is used for communication between a kernel and a library

interface procedure and one is used for communication between

kernels on different nodes in the network. The communications

manager perform any necessary conversions between the two packet

formats. Figure 4.4 depicts an example of each type of communi-

cations packet. A listing of all the packet types is included in

Appendix C.

Packet Format Used Between an Interface Module and the Kernel

action event data data
code count dd

Packet Format Used Between Kernels on Different Nodes

action from from I to to devent I aa I -

code Inode id process node id process countid size t

Figure 4.4. Kernel Communication Packet Formats
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The communications manager processes all received

packets. If a packet destination is a remote node, the packet is routed

to the node via the hardware communications link identified by the

node.link data structure. If the packet is for a local application pro-

gram module interface procedure, the packet is routed to that inter-

face procedure via the appropriate local link. Otherwise, the packet is

processed by the node's shared memory manager.

c. Shared Memory Manager

The shared memory manager actually performs the

operations defined by the various library interface procedures. As a

result of external requests, this module accesses the kernei data

structures and, if a response is required, generates appropriate mes-

sage packets for return to the requesting process.

2. Data Structures I

Operation of the kernel is best described by examining the

set of data structures that support the kernel. These data structures

are central to operation of the kernel. Diagrams of these data struc-

tures and their interrelation are shown in Figures 4.5, 4.6, and 4.7.

a. node.l"nk

This array is used to represent the physical configuration

of a network. Each node in the network is assigned a unique identi-

fying number. By convention, the assigned numbers start at zero and

are consecutive. The node.link data structure is a one-dimensional

array with one element for every node in the network. The value of

the ith element in the array identifies the number of the hardware

5
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link that is used to send messages to the network node with identify- ,.

ing number i. This does not necessarily mean that the ith node is at

the other end of the specified link. Rather, it means that the node on

the other end of the sp :cified link is the next node in the path to the

ith node.

Note that the node.link array may be viewed as one row

extracted from a type of adjacency matrix that defines the network.

Such an adjacency matrix array is, in fact, used at compile time to

define the individual node.link arrays. As a result, each kernel hold a

portion of the overall matrix. Currently, the programmer defines the

contents of this matrix as the last step of the software development

process.

b. count.node

As was done to uniquely identify nodes, each event count

and sequencer in the system is assigned a unique identifying number.

Again, by convention, these numbers start at zero and are consecutive.

The count.node structure is a one-dimensional array with one element IS. -

for each event count and sequencer in the system. The value of the ith

element in the array identifies the number of the node that maintains

the count assigned identifying number i. This array identifies which

processor in the network is responsible for maintaining each event -

count. ,

C. count.array 
-p

This is a two-dimensional array that contains four ele-

ments for each event count and sequencer maintained by a kernel at a V,
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node. The first two of these elements are the current values of the

event count and sequencer. The third element is either a nil pointer b

or a pointer to the base of a shared memory segment associated with

the event count and sequencer. The fourth element is either a nil

pointer or a pointer to a list of processes which have been suspended

by executing the await library procedure. This list is ordered by value

of the count value specified when a processes executed the await pro-

cedure. Each event count and sequencer has a separate waiting pro-

cess list associated with it.

d. count.arrayindices

This is a one-dimensional array that has one element for

each event count in the system. For counts maintained at a particular --

node, this array contains the index of that count's data in the

count.array data structure. For counts not maintained at the node, the

array contains the nil token. Use of this array speeds access to a

count's data in the count.array data structure by providing a direct

pointer to the desired row and avoiding having to search through the

count.array to find the correct row.

e. node.awaits

As was mentioned earlier, associated with each event

count and sequencer is a list of suspended processes waiting for par-

ticular count values to be reached. These lists of suspended processes

are stored using the node.awaits data structure. The data structure is

a two-dimensional array where each row of the array represents an

entry for one suspended process. There are four data elements for
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each entry. The first element of the entry is the count value for which

the suspended process is waiting. The next two elements identify

which process at which node has been suspended. The final element

is either a nil pointer or a pointer to the next entry in that particular

waiting process list. These pointers and the waiting process pointers

in the count.array data structure are row index values of the

node.awaits data structure. Figure 4.5 shows an example waiting pro-

cess list.

count array

Event Count Sequencer Memory Await ListI 0
Value Value Pointer Pointer I

42 44 nil

650 0 nil

12345 12348 n

447 0 nil nil

node. awaits

~Wait-for Waiting Waiting INext Await
Count Node Id Process Id Pointer

12347 10 5 nil

12346 7 6

43 1 8 nil

Figure 4.5. Kernel Waiting Process List Structure
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L free.list

This is a one-dimensional array that has one element for

each array position in the node.awaits data structure. The free.list data

structure holds a list of node.await data structure row indices that are

not in use and may be allocated to any event count and sequencer's

waiting process list. As entries are removed from wait process lists,

the associated node.awaits row indices are returned to this free list.

A pointer into the free.list data structure identifies the

value of the next available node.awaits row index. When this next

index is allocated, the pointer is incremented to find yet the next

available node.awaits row index. When an index is returned to the

free.list data structure, the pointer is decremented and the returned

index is stored. Figure 4.6 illustrates the use of the free list and asso-

ciated pointer.

g. count.size

This is a one-dimensional array with one element for

each event count and sequencer in the system. The value of the ith

element in the array identifies the number of bytes of shared memory

that are to be as,-ociated with count i.

IL node.data

This array is the block of shared memory available at a

node. Segments of this memory block are apportioned based on the

values in the count.size data structure for counts being maintained at

thot node. The memory pointers in the count.array data structure
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node. awaits

Wait-for Waiting Waiting Next Await
Count Node Id Process Id Pointer

12347 10 5 nil

12346 7 6

43 1 8 nil

free. listI I .I I " 1-,"
'.4

Next Free
Pointer

Figure 4.6. Kernel Waiting Free List Management

point to the start of individual shared memory segments in this block

of memory. Figure 4.7 shows how this shared memory array is config-

ured and accessed.

3. Library Procedures

A functional description of each of the library interface pro-

cedures is provided below. Each procedure includes a reference to a

"link" parameter. This parameter is a bidirectional communication

channel that links or connects a distributed application program

module to the kernel. The program module does not directly use the
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channel for any communication. The library interface procedures use

this channel internally for communicating with the kernel. The

detailed source code for the procedures is provided in Appendix C.

count .array. indices

nil nil nil nil 4,nil

count .array

lEvent Count Sequencer Memory Await List
Value Value Pointer Pointer ,

1
42 44 ni

_ _ _ _0 ~nil44 0, i I,, I nil - J

node. data

count. size 
-

256 0 26 0 16 6 2 512 0

Figure 4.7. Kernel Shared Memory Access Data Structures
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a read(link, count.id, count.value)

This procedure performs the read operation on the

specified event count. The value of count.value is set to the current

value of the count.

b. advance(Ulnk, count.id)

This procedure increments the value of the specified

event count. If other processes are waiting on the new value of the

event count, these waiting processes are resumed.

c. await(link, count.id, count.value)

The executing process is suspended until the value of the

specified count reaches the argument count.value. If the value of the

specified count is already greater or equal to the argument count.value,

the process executing the await call continues execution.

d. ticket(lnk, count.id, ticket.value)

This procedure sets the value of ticket.value to the value

representing the next available reservation for the specified

sequencer.

e. put(link, count.id, index, byte.array)

This procedure provides write access to the shared

memory segment associated with the specified event count. The array

of bytes passed to the procedure is stored in the shared memory seg-

ment offset from beginning of the shared memory segment by the

number of bytes specified by the value of the index parameter.
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£ get(link, count.id, index, byte.array)

The get procedure complements the put procedure by

providing read access to the shared memory segment associated with

the specified count. The array of bytes passed to the procedure is

read from the shared memory segment offset from beginning of the

shared memory segment by the number of bytes specified by the value

of the index parameter. The number of bytes read is based on the size

of the byte.array parameter.

g. ecs.kernel(lnk.array'count.node'count.sizenode.id,

node.link)

The procedure for the kernel is itself included in the

library. This procedure is executed on each node in the system. The

link.array parameter for the kernel is an array of all the individual

links that connect the application program modules at a node to the

kernel. The other kernel parameters are described in detail in the

data structures section of this chapter.

D. PROGRAMMING

This section presents a brief overview of how to program using

the shared memory interface. A detailed programming example is

presented in Appendix D. Programming using the shared memory
interface is accomplished in three basic steps.

The first programming step is to divide the program into modules

that should operate in parallel and to define the shared memory seg-

ments and event counts and sequencers that will be required for

communication between and synchronization of the modules. This
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step should performed without considering the physical configuration

of a network.

The next step is to code the individual modules using the library

interface procedures to manipulate the event counts and sequencers

and to access the shared memory segments. Since this step is also

accomplished without considering the physical configuration of the

network, the modules may be coded independently.

The final step of the software development process is to apportion A

modules and shared memory segments amongst different processors

in a network. Although any apportionment of the modules and mem-

ory segments is logically equivalent, this placement process may be

influenced by practical considerations. For example, one would not

want to place all the computationally intensive modules on the same

processor. Further, it would seem reasonable to locate modules shar-

ing the same memory segment physically close to the network loca-

tion of the memory segment. To help quantify the factors that may

influence the network placement of modules and shared memory

segments, the following section evaluates the performance of the

shared memory interface under a variety of conditions.

E. EVALUATION •

To evaluate the prototype programming interface, a set of tests

was conducted using the interface. The objective of this testing was to

provide a representative measure of the communications performance

of a network when using the programming interface. It was desired to %

determine how the network communications performance was
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affected by variations in certain parameters. This testing utilized

T414 Transputers operating with a clock speed of 15 MHz and a link

speed of 20 Mbits per second. These tests are described in the ,

following paragraphs. It should be noted that the prototype program-

ming interface was not optimized for maximum performance. Because

of this, the interface performance documented here can likely be
*5%

improved. Chapter VI describes some ways in which the program-

ming interface performance can be improved.

1. Basic Interface Procedure Timing

As the first step in examining the performance of the pro-

gramming interface, it was chosen to measure the execution times of

the various interface procedures. A test program was developed to

execute each of these procedures in a loop. The time required to

execute the loop with each of the interface procedures was measured.

The time required to execute the loop without an interface procedure

(i.e., a "null loop") was measured and subtracted from the interface .

procedure loop times. The resulting time was used to determine the

average time required for a single interface procedure execution.

Interface procedure execution times were measured under

several sets of conditions. Specifically, the network distance between

an interface procedure and its target event count and sequencer was

varied and, for the put and get operations, the size of the argument

data element was varied. The results of this testing are shown in

Figures 4.8, 4.9, and 4.10.
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Figure 4.8. Primitive OReration Timing Test Results

P -03 "- 64 Bytes
S256 Bytes.-.

.2- --- --- -

x EU 1064 Bytes-U- 512 Bytes -

1 . .... --

0*
0 1 2 3 4 5 6 7 8

Hop Distance •

Figure 4.9. Put Operation Timing Test Results
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Figure 4. 10. Get Operation Timing Test Results

Figure 4.8 shows two basic types of execution behavior. First,

the execution times for one group of interface procedures is relatively

constant over the range of conditions tested. This group of proce-

dures includes those that do not require any response from the dis-

tributed kernel. The procedure can pass its communications packet

to the kernel and the application program module can proceed with-

out waiting for a reply. Since communication between the interface

procedure and the kernel is via memory-to-memory transfer, the

transmission of a communications packet is fast and relatively insensi-

tive to variations in data element size over the range of kernel opera-

tion. Note also in Figure 4.9 that the execution time for the put

operation is significantly less for the zero-hop (same node) case than

for the one-hop case. This is because the zero-hop case is executed by
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performing a memory-to-memory transfer of data as opposed to the

slower physical link transfer of data in the one-hop case.

The second type of behavior is for interface procedures that

do require a response from the distributed kernel. As can be seen in

Figure 4.8 for the read, ticket, and await procedures and in Figure

4.10 for the get procedure, execution times are strongly dependent on

the test conditions. As the network distance is varied, the overall

execution time increases because the "round trip" communication

time in the network increases. Further, since data transfer between

nodes via the hardware links is significantly slower than the memory

to memory transfer, the effects of data size on execution time for the

get procedure become significant.

The results of this testing imply that there is a preferred

location for the counts and shared memory segment for a producer

and consumer of data located at different nodes in the network. Since

the put operation is relatively insensitive to network distance and

since the get operation is greatly affected by network distance, it

would appear that the shared memory segment for a producer

consumer pair should be located at the consumer's node. A test was

performed to confirm this. In this test, the count and shared memory

segment for a producer and consumer pair were placed at the

producer's node, then at the consumer's node. The resulting data

communication rates were measured for various data element sizes.

The results of this testing are shown in Figure 4.11 for a network

distance of seven nodes. The results of this test show that the highest
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communications rate is obtained when the shared memory segment

and associated event count for a producer/consumer pair is located at

the consumer's node. "

60 1.
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2. Node Distance Effects on Communication Rate

The distance between an application program module pro-

ducing data and the application program module consuming that data

can be measured as the number of physical links or *"hops" in the

communications path between the node locations of the modules. A

Fest was performed to determine the effect that hop distance could

have on the overall data communication rate between application pro-

gram modules. In this ttst, a producer and consumer of data were
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separated by increasing hop distances. The library interface proce-

dures were used to transfer data between the producer and consumer @

at the maximum possible rate. In addition, since the size of a commu- %

nication message has a demonstrated effect on performance (Chapter

III), the size of the data element being communicated using the pro-

gramming interface was varied. The resulting communications data

rates are shown in Figure 4.12.

400--

350- - -
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250 - - - -
m € ! " " 1 Byte '..

•- . 200' - -. -.- 4" 64Bytes
q 5. 12 Bytes

00 42). ' .7i ?
.5%. 150' -10 - - 4- l24 Bytes

50

04P4
0 1 2 3 4 5 6 7

Hop Distance

Figure 4.12. Hop Distance Effects on Communication Data Rate

This graph shows that as the hop distance increases, the 0

maximum data rate decreases. This decrease is rapid for first few

hops but less significant as the hop distance is further increased. This

is because each additional hop represents a proportionally smaller

increment of in-line delay to the data transfer. As was shown in
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Chapter III for the Transputer in general, communication of larger

data elements is more efficient when using the programming

interface.

Processes executing on the nodes between the producer and

consumer may also be affected by the data transfer through a node. To

examine this, a looping calculation was initiated on a node immedi-

ately between a producer and consumer pair. The number of loops

executed per unit time during a data transfer was measured and com-

pared to the no-data transfer looping rate. Again, varying sizes of data

elements were used. The results of this testing are shown in Figure

4.13.

Figure 4.13 shows that lowest performance of about 70 per-

cent of normal occurs when using the smallest-sized data elements.

As the size of the data element increases, the performance increases

to a maximum of about 80 percent of normal. Performance of the F

intermediate process improves when the data element size is

increased because the overhead associated with communicating a sin-

gle message becomes relatively smaller. This is the same general 4'"

effect as was shown in Chapter III for communication with varying

sized data packets.

3. Hardware Link Sharing Effects on Communication Rate

When using the programming interface, it is likely that data

communication between several pairs of producers and consumers will

be conducted using the same hardware communications link. In this

case, the kernel in the node on either end of the link is also involved
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in the communication. A test was performed to determine what

effects this link sharing had on the overall data communications rate

between the nodes. In this test, producers and consumers were

placed on adjacent nodes. Producers were placed on each node in the

same number to provide balanced bidirectional utilization of the hard-

ware link. The number of producers on each node and the size of a

communication data element was varied. The results of this test are

shown in Figure 4.14. This plot shows that, although some degrada-

tion in communications performance does occur due to kernel over-

head, a substantial data rate can be maintained when a hardware link

is shared between several users.
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Figure 4.13. Intermediate Process Degradation
During Communication
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Figure 4.14. Shared Hardware Link Communications Rates

4. Multiple Link Effects on Communication Rate

In most cases, several links on each Transputer in a network

will be connected and utilized at any one time. To test the

communications performance of the kernel under these conditions, a

varying number of hardware links on one Transputer were

bidirectionally loaded. The resulting data rates were measured for

different data element sizes. The results of the test are shown in

Figure 4.15.
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Figure 4.15 shows that, as the number of links used

increases, the data actually communicated via each link decreases. r

However, in Chapter III it was shown that link communication rate

was essentially independent of the number of links active. The kernel

must, therefore, the cause of this reduced link utilization. Since all

data messages must be processed by the kernel and since the kernel -.5.

can only process and transfer a fixed maximum number of messages in

any time period, a limit on the data rate through the kernel must _

exist. Since Figure 4.15 shows the communication rate per link

decreasing by more than a factor of two when a second link is acti-

vated, it appears that the kernel data rate limit is less than the capac-

ity of a single communication link. Activating additional links,
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therefore, except to reduce the hop distance between nodes in a

network, does not increase the overall communication bandwidth of

the network. Chapter VI discusses potential changes to the kernel

which may improve the programming interface performance.

N
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V. MESSAGE-PASSING MODEL PROGRAMMING INTERFACE

A BACKGROUND

The shared memory model is one method for isolating the dis-

tributed systems software designer and programmer from having to

consider the physical configuration of a network of Transputers. It is

also possible, however, to utilize a message passing model to provide

for this isolation. To investigate this alternative, a prototype pro-

gramming interface based on message passing has been developed.

This chapter describes and evaluates this prototype.

13 IMPLEMENTATION

Since the Transputer is based on the concept of Communicating

Sequential Processes LCSP), using this concept as a basis for a mes-

sage-passing prototype was a natural choice. Communications in the 0

message-passing prototype are, therefore, based on CSP communica-

tions "rules." Specifically, message passing is logically point-to-point,

synchronousm and unbuffered.

A significant goal in the development of this interface was to per-

mit application program modules to be written in the Transputer's

"native" high-level language, OCCAM, without requiring any additional

external procedure references. In this way, existing modules pro-

grammed in OCCAM could be used with the interface.

As with the shared-memory model prototype. the core of the

message-passing prototype is a distributed kernel that executes on
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each node in the network. Figure 5.1 shows the physical configuration

of such a network. Note that this physical configuration is very similar

to the physical configuration used in the shared-memory model

prototype.

Transputer 1 Transputer 3

i ii

... .Application
DistributedProgram

Kernel Transputer 2 Modules

Figure 5. 1. Physical Confl-guration of Messa-e-Passing Kernel

Figure 5.2 depicts the logical configuration of the message-passing

network as seen by the application. The logical configuration of the

74

.\ ,**** .,/ sF.I*- \.f f'. U ' -



message-passing network shows individual application program mod-

ules interconnected by a network of global message-passing channels.

Global
Channels

via
Distributed

Kernel

nx,'

Program
Modules

Figure 5.2. Logical Configuration of Message-Passing Kernel I

This chapter frequently uses the terms "local channel" and

"global channel" when referring to the operation of the message-

passing prototype. A local channel is an actual communications path

that exists between a process and a kernel. Figure 5.1 shows several

examples of local channels. Global channels, as shown in Figure 5.2,

are the virtual communication paths that exist between two processes.

These virtual communications paths are established and maintained by
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A

the distributed kernel. Local channels may be thought of as connect-

ing processes to the ends of global channels.

1. The Kernel

Figure 5.3 shows a block diagram of the message-passing

kernel. As shown, the kernel consists of three major parts: the

Input/Output Buffers, Channel Controllers, and the Communications

Manager. In addition, the kernel performs some initialization of the

network. Each node broadcasts to the network a list of the global

channel ends that it has been assigned. This information is used by

the kernel to create a global routing table for network

communications.

a. Input/Output Buffers

These buffers are identical to those used in the shared

memory model prototype. They decouple the relatively slow link data

transfers from the operation of the kernel. The buffers enable the ker-

nel to operate in parallel with network data transfers.

b. Channel Controllers

The kernel creates one channel controller process for

each local channel at a node. The channel controller is the physical

connection between a local channel and the kernel and is the logical

connection between a local channel and the appropriate global chan-

nel. Communication over the global channel is controlled using a sim-

ple protocol which is managed by these channel controllers. When

the receiving end of a global channel is ready to receive an application

program module message, the receiving end channel controller
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transmits a "ready to receive" message to the sending end controller.

The sending end controller is then released to accept the applica-

tion's message and send it to the receiving application program mod-

ule via the global channel.

Applcatinal
CommumcatonsaPogra

...... ...... ......

Fiue53Lesaeosig enlLgcal Block...............
Manaer ... M dule
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c. Communications Manager

As in the shared memory interface, messages communi-

cated over the network are formatted as packets. Figure 5.4 diagrams

the packet format used. Each packet received from a hardware link or

from a channel controller is processed by the communications con-

troller and routed to its packet header identified destination.

Packet Format Used Between Kernels on Different Nodes

action to global data data
code node id channel id size .

Figure 5.4. Kernel Communications Packet Format

At the current state of the kernel's development, mes-

sages transmitted from an application program module over a global

channel are restricted to only one of the simple protocols predefined

in the OCCAM language [PoMa87]. The available protocol provides for

transmission of variable-length byte arrays (INT::[]BYTE). This is not a

particularly limiting restriction since any structure in OCCAM can eas-

ily be RETYPED into an array of bytes for communications purposes.

2. Data Structures

The message-passing prototype kernel maintains a set of data

structures that defines the characteristics of the physical and logical

communications network. The overall operation of the kernel is fun-

damentally dependant on the interrelation of these structures. The
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kernel data structures are described in the following paragraphs.

Figure 5.5 is an example of the manner in which these data structures S

are interrelated at two different nodes.

a. node.link

This data structure is identical to the node.link data
structure used in the shared-memory model. The value of the jth

element in the array identifies the number of the hardware link that

connects to the next node in the path leading to node i. The array

defines the node's view of a network. Currently, the programmer

defines the contents of this data structure at the end of the software

development process based on the particular network configuration

that is to be used.

b. gchan.node !:

This structure is used to identify the end locations of 1
network global channels. This is a two-dimensional array which has a

two-element entry for each global channel defined in the distributed

system. Each global channel in the network is assigned a unique

identifying number. By convention, the assigned numbers start at zero tz

and are consecutive. This array is indexed by a global channel's unique

identifying number. The first element of an entry identifies the node

location of the process that outputs to the global channel. The second

element identifies the node location of the process that inputs from

the channel. During kernel initialization, each node broadcasts a list-

ing of global channel ends at the node. The kernel uses these
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Segment of a Logical Configuration

node n node m
global channel g

local channel Iou local channel I I

Data Structures for Logical Configuration
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Figure 5.5. Kernel Data Structure Interrelation -
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broadcast messages to construct this array. As a result, each node in *M

the system has an identical copy of this data structure. ,

c. gchan.lchan

If a global channel end is connected to a local channel at

a particular node, this structure identifies which local channel the

connection is to. This is also a two-dimensional array indexed by a

global channel's unique identifying number. Each entry in the array

consists of two elements. In general, the first element of an entry is

the identifier of the local channel that outputs to the global channel;

the second element is the identifier of the local channel that inputs

from the global channel. At a particular node, this array only includes

local channel identifiers for the global channels that output from or

input to that node. All other entries in the array are nil at that node.

d. loc.chan

This data structure is an array of OCCAM communication

channels. This array, potentially different at each node in the net-

work, defines all the local channels that connect to global channels at

a particular node.

e. Ichan.gchan

This is a one-dimensional array with an element for each

local channel at a node. The value of the ith element in the array is the

identifier for the global channel to which local channel i is connected.
L char.map

Each node in a network has a different version of this

data structure. The data structure is an array that holds two elements
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for each local channel defined at a node. For the ith channel definedi

in the loc.chan array, the ith entry in the chan.map array defines the

end of the global channel "connecting to" that local channel. The first

element of an entry is the unique identifier for the global channel.

The second element of an entry identifies whether the local channel is

connected to the sending or receiving end of the global channel.

2. Library Procedures

The Library for the message passing interface consists only of

the distributed kernel procedure:

csp.kernel(node.id, node.link. chan.map, loc.chan).

This kernel procedure is executed on each node in the sys-

tem. In general, the parameters for this procedure identify the physi-

cal and logical channel mappings for that node.

C PROGRAMMING

This section presents a brief overview of how to develop a pro-

gram using the message-passing interface. A detailed programming

example is presented in Appendix F. Programming using the mes-

sage-passing interface is accomplished in essentially the same three

basic steps as is programming using the shared memory interface.

The first step is to divide the program into modules that should oper-

ate in parallel and to define the point-to-point channels that will be

required for communication between the modules. This modulariza-

tion need not, hnwever, consider the physical four-link limitation of an
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individual Transputer or the actual connectivity of a particular

network.

The next step is to code the individual modules using OCCAM

programming guidelines [PoMa87l. Thus far, the program develop-

ment methodology is the same as would be used for developing any

program in OCCAM.

The final step of the software development process is to apportion

modules amongst different processors in a network. The same practi-

cal considerations that influence the placement of channels when ,

using the shared memory model also need to be considered when

using the message passing model.

D. EVALUATION

The same types of testing were performed for the message-pass-

ing interface as were performed for the shared-memory interface.

This section provides the results of the message-passing model inter-

face kernel testing and compares the test results of the two interfaces.

The message-passing interface testing also utilized T414 Transputers

operating with a clock speed of 15 MHz and a link speed of 20 Mbits

per second. Since the message passing interface has no separate set

of procedures for use in application program modules, separate inter-

face procedure timing tests were not needed.

1. Node Distance Effects on Communications Rate

A test was performed to determine the effect increasing dis-

tance between nodes has on the overall data communication rate

between application program modules. In this test, a producer and
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consumer of data were separated by increasing hop distances. Data

messages were sent from the producer to the consumer at the maxi-

mum possible rate. The resulting communications data rates for dif-

ferent data message sizes are shown in Figure 5.6. Figure 5.7 provides

a comparison of the maximum data communications rates for the two

interfaces.

1000 -

900 -- - --- ..
_ 800

cc: 700- - - - - - -

00 - 124 Bytes

200 B

0 1 2 3 4 5 6 7 8

Hop Distartce

Figure 5.6. HoD Distance Effects on Commulnications Data Rate

Figure 5.6 shows that as the hop distance increases, the

I: " maximum data rate decreases. This decrease is rapid for first few

, i hops, but less significant as the hop distance is further increased.
~This is because each additional hop represents a proportionally
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smaller increment of in-line delay to the data transfer. This same

effect was shown for the shared memory kernel in Chapter IV.

1000-

800- J
-G- Message Passing

700. -- Shared Memory

000 600-

.= LQ 500- _ ----------

300 - -----------. 4001

E 300

200-

100 - ----

0 -

0 1 2 3 4 5 6 7 8

Hop Distance

Figure 5.7. ComDarison of HoD Distance Effects

Figure 5.7 shows that for smaller network distances, the

message passing interface has a significant data communications rate

advantage over the shared memory interface. However, as the net-

work distance between the producer and consumer nodes increases,

the communication performance difference between the two

interfaces decreases. In both cases, minimizing the difference

between the producing and consuming nodes improves performance.

With the message-passing model's greater data communica-

tion rate, it might be expected that performance of processes on
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nodes in the path between a producer and consumer would be

degraded to a greater degree with the message-passing model than

with the shared-memory model. Figure 5.8 shows the intermediate

process degradation for both interfaces.
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0.9

0 .7 . .
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0-- Shared MemoryZ 0.2 Message Passing
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Figure 5.8. Intermediate Process Degadation
During Communication

Ai can be seen, the degradation for the message-passing

model is less than for the the shared-memory interface. The reason

for this behavior appears to lie in the number of messages an

intermediate node must process when using the two interfaces. In

the shared-memory model case, each production/consumption cycle

requires at least the transmission of three messages between nodes

(an await message, an advance message, and either a put or a get %
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message). The message-passing model only requires that two

messages be sent (a receiver ready message and a data message). As

shown in Chapter III. a greater degradation should be expected when

using more messages to communicate a given sized data element.

2. Hardware Link Sharing Effects on Communication Rate

In the message-passing model, several global channels will

likely use the same physical link for network communication. As with

shared-memory interface testing, a varying number of producer/con-

sumer pairs were executed on two adjacent nodes to examine the

kernel's performance. The results of this test are shown in Figure 5.9.

Despite some performance degradation, these results show that a link

can be effectively shared between global channels.
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Figure 5.9. Shared Hardware Link Communication Rates
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3. Multiple Link Effects on Communication Rate

Testing of the message-passing interface with a varying num-

ber of links active was performed for the message-passing interface. .

The results of this testing are shown in Figure 5.10. This testing

revealed the same type of kernel data rate limitation found when

testing the shared-memory model interface. Although the data rate of

the message-passing kernel is significantly greater than that of the

shared memory interface, the message passing kernel's data rate limit

remains less than the capacity of one hardware communications link.
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300400
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Figure 5. 10. Multile Hardware Link Communication Rates
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VI. CONCLUSIONS AND RECOMMENDATIONS

A CONCLUSIONS

This thesis has evaluated the performance of an isolated Trans-

puter and the performance of two abstract programming interfaces

with distributed kernels for a network of Transputers. The results of

the evaluation show that, although the use of a distributed kernel

reduces the effective performance of individual Transputers in the

network, the performance remains relatively high. In general, the

performance of the message-passing interface was superior to that of

the shared-memory model interface. This comparison should not,

however, be taken as absolute. There are improvements discussed in ".

this chapter that can be made to both interfaces which could signifi-

cantly affect this comparison.

Thus far, all evaluation of the abstract programming interfaces has

been based on testing. The programming interfaces also need to be

examined on the basis of whether or not they can be effectively used in

the development of distributed programs. By its nature, such an v
assessment is subjective and prone to be influenced by one's prior

experience and personal programming style preferences. Based on

the experience of developing test and example programs for use with

the interfaces, it appears that both of the interfaces do simplify the

programming of a physical network of Transputers. The primary fac-

tor in this is that the programmer is isolated from having to consider a

specific physical configuration of a network at all stages of program
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development. Only after the program is developed need a particular

configuration be considered, at which point the physical configuration

is described by a set of simple data tables.

Both interfaces accomplish the coal of isolating the software

designer from physical configuration considerations. There was, how-

ever, no clear choice as to which interface methodology was the over-

all "best" from a programming standpoint. Each methodology had

certain advantages and disadvantages. In general, the initial design,

development, and coding of a distributed program was most effectively

accomplished using the message-passing model. However, once past

the initial implementation of a program, modifications, either to add

additional functionality or to correct initial design errors, are usually

required. In most cases, these modifications and additions were eas-

ier to make when using the shared-memory model interface.

. RECOMMENDATIONS

As was mentioned previously, the programs for these prototype

interface implementations are not fully optimized. As a direction for

further work in developing the abstract interfaces for a network of

Transputers, several modifications to the interface implementation

should be considered. In general. the same types of changes can be

made to both interfaces to improve performance. Some suggested

changes are listed as follows:

The message packet format can be improved. The current mes-
sage format is actually scheduled as three separate transmissions:
transmission of the header, transmission of a size value, and
transmission of the data array. Efficiency can be improved by
reducing the number of required transmissions. For example, the
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header information and the data array could be combined into a
single array transmission preceded by a size transmission. This
would eliminate one scheduled transmission each time a message
is handled.

" The transmission of messages within the kernel uses OCCAM
communications channels. This transmission is performed by
processor-controlled memory-to-memory transfer. When the size
of a data message is large, this decreases the performance of a
node. A simple memory manager could be incorporated into the
kernel to allocate space for messages in transit so that the trans-
fer of messages within the kernel could be performed by commu-
nicating pointers or handles to the messages via the OCCAM
channels.

" In the case of the shared-memory model, the interface only
transfers data from a shared-memory segment to a remote node
when an application program module at the remote node requests
the data. If it is known in advance that certain remote nodes or
modules will require frequent access to a node's shared memory
segment, performance could be improved by having the dis-
tributed kernel automatically and periodically transfer selected
segments of globally shared memory between nodes.

" Many of the data structures within the kernels are sparse. As the
size of a network becomes larger, the storage required for these
structures will also become larger. At some point, it is likely that
a compressed storage scheme for the kernel data structures will
need to be adopted.

In addition to these performance improvements, the kernel

should be modified to include a distributed algorithm for examining

the network to determine a network's physical configuration. Use of

such an algorithm would save the software designer from having to

specify the physical configuration of a network as the last step of the

design process. More importantly, however, to support fault toler-

ance, such an algorithm could be used to identify an altered physical

configuration so that alternate message routing paths could be

established.
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APPENDIX A I

DETAILED TRANSPUTER TIMING TEST CONFIGURATION

AND SOURCE CODE

A SUMMARY

The purpose of the timing test configuration and associated test

code is to provide a general framework for testing Transputer

performance characteristics. The detailed configuration of the test

set-up is shown in Figure A.1. The test set-up consists of a central

"target" Transputer and four "satellite" Transputers, each attached to

the target Transputer by a communications link. In addition, there

are associated Transputers to perform the functions of control and of

data routing and recording.

R SOURCE CODE

1. Confimtion Section

TIMING TEST PROGPAM

M { link definitions
VAL link0out IS 0:
VAL linklout IS 1 :
VAL link2out IS 2
VAL link3out IS 3 :
VAL link0in IS 4 : 'p

VAL linklin IS 5 :
VAL link2in IS 6
VAL link3in IS 7

{ { declarations
CHAN OF ANY anm.mid.0, an.mid.1, arm.mid.2, arm.mid.3,

mid.amn.0, mid.ann.1, mid.anm.2, mid.a=n.3, %
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%IV0

arm.echo.0, ann.echo.1, ann.echo .2, ann. echo .3,
echo.an. 0, echo .ann. 1, echo .arm.2, echo .ann.3,
host.echo.O, host.echo.2,N
echo.host.0, echo.host.2

{{SC target
*... target procedure
M)
ffSC satellite

*... satellite procedure

((( 'C echo
.. echo procedure

PLACED PAR

((j echo 0
PROCSSOR 10 T4

Mf channel placenents
PLACE echo.host.0 AT link0out
PLACE host .echo.0 AT link~in
PLACE echo.ann.0 AT link3out
PLACE arm.echo.0 AT link3in:
PLACE echo.ann.l AT linklout:
PLACE anm.echo.l AT linklixi:

echo (echo.host.0, host.echo. 0,
echoann.0, ann.echo.0,
echoain.1, axn.echo.1, 0)

(fecho 2
PROCESSR 11 T4

((( channel placerents
PTAC echo.host.2 AT Iink0out
P~ host.echo.2 AT link~in
PLACE echo.anu.2 AT linklout
PLACE amn.echo. .2 AT linklin
PLAE echo.ann.3 AT Iink2out
PLTC anm.echo.3 AT link2in
M)

echo(echo.host.2, host.echo.2,
echo.an-n.2, arm.echo.2,
echo.azn.3, ann.echo.3, 2)

satellite0

PROCESSOR 13 T4
channel placerrents

PLAT ann.echo.0 AT link2out
PTP echo.ann.0 AT link2in
PLACE arm.mid. 0 AT linklout
PLAC mid.ann.0 AT linklin

satellite (ann.echo.0, echo.an. 0, axn.mid.0, mid.arm. 0, 0)
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({satellite 1
PRCCESSOR 21. T4

({channel placen-ents
PLACE ann.echo.l AT link0out
PLTC echo. azn. 1 AT link~in
PLACE annmid. 1. AT link3out
PLTC mid.ann.1 AT link3in

satellite (ann. echo. 1, echo. ann. 1, azmanid. 1, mid. aim. 1, 1)

fit satellite 2
PROCSSCR 23 T4

({ { channel placerents
PLACE ann.echo.2 AT linklout
PT~ echo.ann.2 AT linklin
PLACE ann.rrid.2 AT link2out
PLTC mid.axzm.2 AT link2in

satellite (ann.echo .2, echo. ann. 2, annmid.2, mid. ann. 2, 2)

MU satellite 3
PR=C( 12 T4

({( channel placerrents
PLACE ann. echo .3 AT link3out
PLACE echo .axn. 3 AT link3in
PTP azmid. 3 AT linklout
PLACE mid.ann.3 AT linklin

satellite (aimn.echo. .3, echo .an. 3, ann.mid. 3, mrid.ann. 3, 3)

11, target
PRCCESSCR 20 T4

[{ H channel placenents
PLAE mid. arn. 0 AT linklout
PT~ ann.rnid. 0 AT linklin
PLACE mid.ann.1 AT link2out
PLACE ann.mid.1 AT link2in
PT mid. ann. 2 AT link3out
PLACE ann.xid.2 AT linkin
PLACE mid.arm.3 AT link0out
PLACE arm.mrid. 3 AT linkO in

target (mid. ann. 0, ann.mid. 0, mid. ann. 1, airn.xnid. 1,
mid.aim.2, ann.mid.2, rid.ann.3, annxmid.3)

2. Target Node Procedure

PRCC target (CHAN OF ANY out.link.0, in-Link.0, out.link.1, in.link.l,
out.link.2, in.link.2, out.link.3, in.link.3)

Jfdescription
-This procedure perform corrrnications with adjacent nodes and perform
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-- calculations in a loop to measure the interaction of camrnication and
-- calculation. In general, a timer is started and the ccmnriications and
-- the calculation is started. Men the camunications are canplete, the

tim-er and the looping calculation are stopped. The timre for the
-- commizcation and the numher of loops perfored during this time is

extracted and reported.
}}

{ { declarations
VAL else IS TRUE
VAL one.second IS [1000000/64, 1000000]

VAL ave.count IS 1

f priority codes
VAL low IS 0:
VAL high IS 1

{{ speed codes
VAL slow IS 0:
VAL fast IS 1:

{ { operation codes
VAL none IS 0:
VAL null IS 1:
VAL assign IS 2
VAL add IS 3:
VAL sub IS 4:
VAL nult IS 5:
VAL div IS 6:
VAL movel00 IS 7
VAL movelOOO IS 8

{ timedata.tsr
VAL block.size IS 100000:
VAL packet.counts IS [I,2,5,I0,20, 50,l00,200,500,

1000,2000,5000,10000,20000,50000,I00000]
}}}

CHAN OF BOOL status
CHAN OF INT result

{ test set

VAL loop.op IS null
VAL op.count IS 4 :
VAL loop.pri IS low
VAL loop.loc IS fast
VAL ccrm.pri IS high:
VAL cctm. loc IS fast :
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PRI PAR
( { do ccmunication and reporting
HI process declarations
INT trigger
INT packet.count, packet.size
INT loop.count :
INT start.tie, stop.tine

(block. size] BYTE link. data:
PLACE link.data AT 4096:

TIMMR clock :
I

SEQ in.links : 0 FOR 5
SEQ out.links = 0 FOR 5

SEQ packet.count.index = 0 FOR SIZE packet.counts
SEQ

{ initialize for test
packet. count : = packet. counts (packet. count. index]
packet.size := block.size / packet.count

({ take care of triggering
in.link.0 ? trigger
PAR

out.link.0 ! trigger
out.link.1 trigger
out.link.2 I trigger
out.link.3 : trigger

status ! FALSE

(H start the timr

clock ? start.tie
}}}
M do ccrmunication
IF

(in.links + out.links) = 0
{ { tire one second delay for no links active case
clock ? AFTE start.time + one.second (ccarm.pri]
M}}

else
{({ set up links S

PAR
(({ input links
i{{ start link 0 input
IF

in.links > 0
SEQ i = 0 FOR packet.count

in.link.0 ? (link.data FROlM 0 FOR packet.size]
else

SKIP A'
1{{ start link 1 input
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IF

in.links > 1
SEQ i = 0 FOR packet.count

in.link.l ? [link.data FROM 0 FOR packet.size]
else

SKIP

{{{ start link 2 input
IF

in.links > 2
SEQ i = 0 FCR packet.count

in.link.2 ? [link.data FROM 0 FOR packet.size]
else
SKIP

111
{{ start link 3 input
IF

in.links > 3
SEQ i = 0 FOR packet.count

in.link.3 ? [link.data FROM 0 FOR packet.size]
else

SKIP
)
I}}

ouput links
{ start link 0 output

IF
out.links > 0

SEQ i = 0 FCR packet.count
out.link.0 [link.data FRCLM 0 FOR packet.size]

else
SKIP

start link 1 output
IF

out.links > 1
SEQ i = 0 FOR packet.count

out.link.l. (link.data FROM 0 FOR packet.size]
else

SKIP

({( start link 2 output v

IF
out.links > 2

SEQ i = 0 FOR packet.count
out.link.2 [link.data FROM 0 FOR packet.size]

else
SKIP

start link 3 output
IF

out.links > 3
SEQ i = 0 FOR packet.count
out.link.3 ! [link.data FRCM 0 FOR packet.size]

else

98



SKIP

.111

I{U stop the loop count
status ! TRUE

[ stop the timer
clock ? stop.time

f f get loop count results
result ? loop.count

i report results O%
out.link.0 ave.count 0k

out.link.0 loop.op; op.count; loop.pri; loop.loc
out.link.0 carm.pri; ccrm.loc; in.links; out.links
out.link.0 block.size; packet.count; packet.size
out.link.0 ! start.time; stop.time; loop.count

do looping calculation
U process declarations S

BOOL done :
INT iteration.count
INT a, b, c:
(1000]BYTE move.data :

PLACE mve.data AT 4096

SEQ
({I init calc variables
b #FFFFFFE
c #FFF
SEQ in.links = 0 FOR 5

SEQ out.links = 0 FOR 5

SEQ packet.count.index = 0 FOR SIZE packet.counts
{ { ( do calculation loop

SEQ
iteration.count := 0
status ? done
WHILE NOT done

PRI ALT
status ? done

SKIP
TRUE & SKIP

SEQ
iteration.count iteration.count + 1
-- Calulation to be done in the loop goes here

result ! iteration.count
Ill

f {f CXKU4NT do no looping calculation
{ do no looping calculation
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( { process declarations
BOOL done :

SEQ in.links 0 FOR 5
SEQ out.links = 0 FOR 5

SEQ packet.count.index = 0 FOR SIZE packet.counts
[if do wait for synchronization with cmmunication process

SEQ
status ? done
status ? done
result 0

}1}
]11

3. Satellite Node Procedure

PR C satellite(CHAN OF ANY to.echo, frxn.echo, toaid, fram.mid,
VAL =T my.tag)

II description
-- This procedure provides for sourcing and sinking conmmications to place
- a ccuarnications load on the target node of the test configuraticn. If the
- procedure is placed in a the data reporting path from the target node
- to the host system, the satellite also passes along the data fron the
- target node. Packet sizes transmitted from this node are the save size
-- as the packets being received by the target.
}}}

{ declarations
VAL else IS TRUE

114T trigger
DT packet.count, packet.size
INT start.time, stop.tirm

IT ave.count :
INT loop.op, op.count, loop.pri, loop.loc .

IN~T ccmn.pri, corm.loc, mid.in, mid.out
IfT mid.block, mid.packet.count, mid.packet.size
fIT mid.start, mid.stop, mid.loop

S(i{ tinedata.tsr
VAL block.size IS 100000:
VAL packet.counts IS [1,2,5,10,20,50,100,200,500,

1000, 2000, 5000, 10000, 20000,50000, 100000]
)})

[block. size] BYTE link.data:
PLACE link.data AT 4096 j
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TIMER clock

PRI PAR
SEQ in.links =0 FOR 5

SEQ out.links = 0 FOR 5
SEQ packet.count.index = 0 FOR SIZE packet.counts
SEQ

f{ if 'primary' satellite pass on the trigger
IF

my.tag = 0
SEQ

fran.echo ? trigger
to.mid trigger

else
SKIP

H) 6
({ f wait for target start trigger
frcn.mid ? trigger
M}}
{ { initialize for test set
packet. count = packet. counts (packet. count. index]
packet.size = block.size / packet.count
clock ? start.time

(f set up links
PAR

[( start link input
IF

out. links > my. tag
SEQ i = 0 FOR packet.count

frm.mid ? [link.data FRCM 0 FOR packet.size]
else

SKIP

(H start link output
IF

in.links > my.tag
SEQ i = 0 FOR packet.count

to.mid ! [link.data FRCM 0 FOR packet.size]
else

SKIP -'

(H complete test set
clock ? stop.timre
M}} ,'p
{ if 'primary' satellite pass on the mid results .'<

IF
my.tag = 0

SEQ
fran.mid ? ave.count
fram.mid ? loop.op; op.count; loop.pri; loop.loc
fram.mid ? corm.pri; ccrnm.loc; mid.in; mid.out
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franxmid. ? mid.block; mid.packet .count; mid.packet .size
frcrn-mid ? mid. start; mid. stop; mxid. loop
to.echo ave.courit
to.echo loop.op; op.count; loop.pri; loop.loc
to.echo coxr.pri; corrm.loc; mid.in; m-id.out
to.echo rnid.block; mid.packet.count; miid.packet.size
to.echo rid.start; rid.stop; mnid.loop

else
SKIP

ffreport own timing results
to.echo !start.tire; stop.timi

SKIP

4. Echoin- (Data Routing) Node Procedure

PRCC echo (Cl-iA CF ANY to. root, frcn. root,
to .azn.0, from. ann.0, to. ann. 1, from. ann. 1,
VAL Ml'T rny.tag)

If{ description
- This procedure echos timing results fran the target andi satellite nodes to
- the host system. The echoing procedure placed in the routing path from the
- target to the host echos all the host data.

(if declarations
VAL else IS TRUJE

M{ tinLedata.tsr
VALblock.size IS 100000:

VAL packet.counts IS (1,2,5,10,20,50,100,200,500,
1000,2000,5000, 10000, 20000, 50000, 100000)

DNT ave. count
f'T loop.op, op.count, loop.pri, loop.loc

nIW' carn.pri, cczrr.loc, mid.in, mid.out:
INT mid.block, mid.packet .count, mnid.packet .size

INT rid.start, mid.stop, mid.loop

INT trigger
Uq'T ann.start, arr.stop

SEQ in.links = 0 FOR 5

SEQ out.links = 0 FOR 5

SEQ packet.count.index -0 FOR SIZE packet.counts
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SEQ
({{ if 'prirmry' pass on the start trigger
IF
my.tag = 0

SEQ
from.root ? trigger
to.am.0 trigger

else
SKIP

1)}
{{{ if 'primary' echo pass on the target results
IF
my.tag 

= 0
SEQ

frczn.anm.0 ? ave.count
frcm.arm.0 ? loop.op; opocount; loop.pri; loop.loc
frm.ann.0 ? comm.pri; ccmmr.loc; mid.in; mid.out
frman.ain. 0 ? mid.block; mid.packet.count; mid.packet.size
from.arn.0 ? mid.start; mid.stop; mid.loop
to.root ave.count
to.root loop.op; op.count; loop.pri; loop.loc
to.root carn.pri; ccrm.loc; mid.in; mid.out
to.root mid.block; mid.packet.count; mid.packet.size
to.root mid.start; mid.stop; mid.loop

else
SKIP

{ { report satellite timing results
frm.ann.0 ? am.start; am.stop
to.root a=n.start; amn.stop
from. am.l ? am.start; anm.stop
to.root amn.start; anm.stop

---

5. Host (Data Recording) Procedure

PROS root (CHAN OF ANY keyboard, screen,
[41CHAN OF ANY frcrn.u.filer, to.u.filer,

CHAN OF ANY frcrn.fold, to.fold,
fran.filer, to.filer)

M ( description
-- This procedure runs on the host system. It triggers the start of a test
-- run and gathers data fron the network upon corrpletion of the test run.
-- The data gathered is sent to a disk file on the host system for later
-- evaluation or transfer. A subset of the gathered data is displayed on
-- on the host's screen.
})}

TDS library references
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#USE "'\tdsiolib\userio.tsr":
#UJSE "\tdsiolib\interf .tsr":

declarations
VAL else IS TRUE
VAL trigger IS 1 %
VAL uS.per.tic IS [64, 1]
VAL tab IS BYI' 9:

Wrid. lerkgth, result:
[631BYI'E id.string:
CHAN OF ANY data.file:

Mf tixredata.tsr
VAL block.size is 100000: "
VAL packet.counts IS [1,2,5,10,20,50,100,200,500,

1000,2000,5000, 10000,20000,50000, 100000)

network report
IN'T ave. count:

INT loop--p, op.count, loop.pri, loop.loc:
INT ccrm.pri, carrm.loc, rid.in, mid.out:
IN'Tmid.block, mid.packet .count, mid.packet size

mnid.start, mid.stop, mid.loop, mid.tire
an.0.start, arm.0.stop, anr.0.tirte

fl'JTan.1.start, ann.1.stop, ann.l.tirre
arm.2.start, ann.2.stop, an.2.tinre
an.3.start, azm.3.stop, ann.3.tirre

({network channels
VAL link0out IS 0:
VAL linklout IS 1
VAL Iink2out, IS 2
VAL Iink3out IS 3
VAL link~in IS 4:
VAL Linklin IS 5
VAL Link2in IS 6

VAL link3in IS 7
lie"

CHAN OF ANY frcrn.net.0, frcrn.net.2,
to.net.0, to.net.2

PLACE to.net.0 AT link2out
PLACE to.net.2 AT link3out:

PLACEfrozn.net.0 AT link2in
PLACE fran.net.2 AT link3in

PAR

set the filenaxre and run the host systemn filer
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SEQ
[id.string FRP)M 0 FOR 6] "tireOl"
id.length :=6
scrstrearn.to. server (data. file,

fror.filer, to. filer,
id. length, id. string,
result)

run the test network
SEQ

SEQ in-links = 0 FOR 5
SEQ out-links = 0 FOR 5

SEQ packet. count, index =0 FOR SIZE packet. counts
SEQ(N

trigger network

to.net.0 !trigger

ffreceive network results
f rcui. net. 0 ? ave.count '

frcm. net. 0 ? loop.op; op.count; loop.pri; loop.loc -

frcm.net.O ? ccTrr.pri. corrr.loc; mid.in; mid.out
f rcn. net. 0 ? mrid.block; mid.packet .count; mid.packet .size
from.net.0 ? mid.start; mid-stop; mid.loop

frczn.net.0 ? ann.0.start; arn.0.stop
frCmn.net.0 ? arm.l.start; ann.l.stop
frczn.net .2 ? an. 2. start; an-n. 2.stop
f rcm.net. .2 ? ann. 3. start; ann. 3. stop

mid.tirre :=(mid.stop-mid. start) *uS .per. tic [ccrn.pri]

ann. 0.tirre ann. 0 .stop-azn. 0. start
ann.l1.tirre ann. 1 .stop-ann. 1. start
ann. 2. tirre =ann. 2. stop-ann. 2. start
aim.3.tire arm. 3. stop-ann. 3. start

f(U put results to file
M{ processor type
write.int (data.file, 800,1)
write .char (data. file, tab)

Uprocessor speed
write.int (data.file,,20, 1)
write, char (data. file, tab)

((f link speed ".

write.int(data.file,20, 1)
write .char (data. file, tab)

J( loop conditions
write.int (daca.file, loop.op, 1)
write.char(data.file,tab) N
write.int (data.file,op.count, 1)
write .char (data, file, tab)
write.int (data.file,loop.pri,l)
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write, char (data. file, tab)
write.int (data.file,loop.loc,l2)
write.char(data.file,tab)

link conditions
write.int (data.file,corrrn.pri, 1)
write.char(data.file,tab)
write. int (data. file, cii. loc, 1)
write, char (data. file, tab)
write. int (data. fie ad in, 1) I

write, char (data. file, tab)
write. int (data. file,mrid. out, 1) p

write, char (data. file, tab)

M{ { cirm. conditions
write.int (data.file,rnid.block, 1)
write, char (data. file, tab)
write.iit (data.file,mnid.packet.count, 1)
write, char (data. file, tab)
write.int (data.file,rnid.packet .size,l2)
write, char (data.file, tab)
III
(fU target results A
write. int (data. f ile, mid. loop, 1)
write, char (data. file, tab)
write.int (data.file,mid.time, 1)
write, char (data. file, tab)
H1)
M{ satellite results

write.int (data. file, arm. O.tirre, 1)
write, char (data. file, tab)
write. mnt (data. file, ann. 1. tirre, 1)
write, char (data. file, tab)%
write. mnt (data. file, arm. 2. tiire, 1)
write, char (data. file, tab)
write. mnt (data. file, ann. 3. tinre, 1)
newline (data, file)

(Uput results to screen
write.int (screen, in.links, 3)
write.imt (screen, out. links, 3)
write.int(screen, mid. packet. count, 7)
write.int (screen, mid. packet. size, 7)
w-rite.int (screen, mnid. loop, 9)
write.int(screen, raid. tire, 9)
write.int(screen, ann.O.tirre, 9)
write.int(screen, ann.l.tirre, 9)
write.int(screen, anrm.2.tirre, 9)
write.int(screen, ain.3.tirre, 9)
newline (screen)

terminate host system filer
data.file 24
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APPENDIX B

TIMING DATABASE DESCRIPTION

A DISCUSSION

The large volume of data generated by individual timing tests was

loaded into a database management system to facilitate ease of access

and aggregation of any future test results. The Ingres Relational

Database Management System, currently available on the departmental

mini-computer, was selected for this purpose. The Ingres database ,

management system provides a wide range of tools for accessing and

manipulating data. These tools range from a database query language

that can be used to program complex data manipulations and opera-

tions to a completely menu-driven interactive shell for accessing the

database.

This appendix documents the format of the Ingres timing

database. Also, some examples are provided on ways in which timing

data can be accessed through the use of the query language. Complete

documentation for the use of the many features of the Ingres relational

database system may be found in IRe85].

B. DATABASE DESCRIPTION

A relational database consists of a set of relations. A relation is, in

turn, composed of a set of data fields. A relation can be thought of as a

table where the data fields represent the columns of the table. One
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row of the table then represents one individual set of data entered in

the table.

In the timing database, there are several relations that are

defined. The first of these relations, shown in Table B.1, is the rela-

tion that actually holds the timing test data. This table shows each of

the fields in the timing relation, the type of data the field is formatted

for and the length of the data field (in bytes).

TABLE B. 1

TIMING DATA RELATION DEFINITION

Relation Name: timing

column name type length

processor integer 2
procspeed integer 1
linkspeed integer 1
opcode integer 1
opcount integer 1
looppri integer 1
looploc integer 1
commpri integer 1
commloc integer 1
linksin integer 1
linksout integer 1
blocksize integer 4
packcount integer 4
packsize integer 4
loopcount integer 4
looptime integer 4
armOtime integer 4
armltime integer 4
arm2time integer 4
arm3time integer 4

1
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The name of this relation is "timing." Note that the fields defined

in this relation are the same as the data elements written to the host

system file by the timing test program of Appendix A.

There are two additional relations in the timing test database.

These relations, shown in Tables B.2, B.3, and B.4, provide for trans-

lating the numerically encoded calculation loop operation codes, the

timing test priorities, and memory locations in the "timing" relation

into a text description of the corresponding test condition.

TABLE B.2

RELATION DEFINITION FOR CONVERTING

ENCODED OPERATION CODE NAMES

Relation Name: opcodenames

column name type length

opcode integer 1
opcodename character 32

TABLE B.3

RELATION DEFINITION FOR CONVERTING

ENCODED PRIORITY NAMES

Relation Name: prinames

column name type length

pri integer 1
priname character 32
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TABLE B.4

RELATION DEFINITION FOR CONVERTING

ENCODED LOCATION NAMES

Relation Name: locnames

column name type length

loc integer 1
locname character 32 J,

Q EXAMPLES

There are three database operations that are provided as exam-

ples of query language interaction with the database. These operations

are: loading an external text file of data into the database, retrieving

information from the database, and, finally, transferring data from the

database to an external text file.

1. Data Lo

Figure B. 1 is a listing of the query language instructions for

transferring a file of test data from the timing test program into the

timing database. For the most part, these instructions are self

explanatory. Of note are the formatting codes, "cOtab" or "cOnl,"

associated with each of the fields. These formatting codes mean that

the text file representation of of a field's data is a variable length char-

acter string terminated by a tab character or by a new line character.
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copy timing

processor = cOtab,
procspeed = cOtab,
linkspeed = cOtab,
opcode =cOtab,
opcount =cOtab,
looppri =cOtab,
looploc =cOtab,
commpri = cOtab,
commloc =cOtab,
linksin =cOtab,
linksout =cOtab, '

blocksize =cOtab,
packcount =cOtab,
packsize = cOtab,
loopcount =cOtab,
looptime = cOtab,
armOtime =cOtab,
armitime =cOtab,
arm2time = cOtab,
arm3time =cOni

from "/work/ingres/time. file"

Figure B. 1. Quer LangUMg Listing for Loading the Database

2. Data Retrieval

Figures B.2 and B.3 are examples of query language data

retrievals. In Figure B.2, the time (in jiseconds) for single link bidi-

rectional communication of 100,000 bytes with a packet size of 10

bytes is retrieved for all types of processors. The results of this

retrieval are also displayed.

In Figure B.3, the same retrieval is processed but, instead of

displaying the results, the results of the query are used to form the

new relation "new relation."
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retrieve
(%

timing.processor,
timing.looptime

where
timing.linksin = 1 and
timing.linksout = 1 and
timing.packsize = 10 and
timing.opcode = opcodenames.opcode and
opcodenames.opcodename = "null loop"

sort by
timing.processor,
timing.looptime

Executing

Iproces looptime I
------------------------------ I
1 4141 1916591
1 8001 1231431
-------------------- I

Figure B.2. Example of Retrieval for Disola

retrieve into new-relation

timing.processor,
timing.looptime

)V
where

timing.linksin = 1 and
timing.linksout = 1 and
timing.packsize = 10 and
timing.opcode = opcodenames.opcode and
opcodenames.opcodename = "null loop"

sort by
timing.processor,
timing.looptime

Figure B.3. ExamDle of Retrieval for Forming a New Relation
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As can be seen in Table B.5, which lists the characteristics for

this new relation, the fields in the new relation inherit their charac-

teristics from the relation from which the field originated.

TABLE B.5

RELATION DEFINITION FOR THE RETRIEVED NEW-RELATION

Relation Name: new-relation

column name type length

processor integer 2
looptime integer 4

3. Data UnLoading

Figure B.4 shows the query language listing for transferring

the previously created relation "newrelation" to an external text file.

As with the loading of data into the database, a formatting code is

associated with each field to be transferred to the external text file.

The interpretation of these formatting codes is the same as for the .

formatting codes for loading the database.

copy newrelation(a
processor = cOtab,
looptime = cOnl

into "/work/ingres/text.file"

Figure B.4. guerv Languate Listing for Unloading the Database
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IN

APPENDIX C

DETAILED SOURCE CODE FOR THE SHARED MEMORY ABSTRACT
INTERFACE LIBRARY

A SYMBOLIC CONSTANTS

{ { LIB this is LIBRARY "\ecslib\ecssymb tsr"
... Library ID
{ VAL Declarations

{ useful symbolic constants
VAL ELSE IS TRUE:
VAL NIL IS -1 :
VAL OUTPUT IS 0 :
VAL INPUT IS 1 :

definition of system limits
define the muximn% size of an individual ressage

VAL MAX.MESSAGE.SIZE IS 1028 :

- define the rrexinLn size of one node's part of the
- globally shared mrerry
VAL MX.DATA.PER.NWE IS 4096

- define the mauxin nunter of event counts allowed
- in the system I 6
VAL MAX.COUTS IS 256

- define the naxirnun number of event counts to be
- aintained by one node

VAL MAX.COUNTS.PER.NODE IS 16

- define the zrwinxn space allocation for the waiting
- process lists
VAL MAX.AN.IT.QUE.ENTRIES IS 16

-- define the maximxn number of processes per node
VAL MAX.PROC.PER.NDE IS 16 :

{ action codes for ccrmrnications packets
VAL READ.CMD IS 10 : m
VAL READ.REP IS 11

VAL AMAIT.C4D IS 20
VAL AWAIT.REP IS 21
VAL ANAIT.QUE.FULL IS 22 :

VAL ADVANC.CMD IS 30 :
VAL ADVANCE.PEP IS 31 Ile
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VAL TICKET.CMD IS 40
VAL TICNET.REP IS 41

VAL (ET.CMD IS 50
VAL GET.REP IS 51

VAL PUT. CMD IS 60
VAL PUT.RFP IS 61

}}

B. KERNEL PROCEDURE

PROC ecs.kernel([] [2]CHAN CF ANY links,
VAL INT node. id,
VAL C]IINT count.node,
VAL (]lIT count.size,
VAL []fIN'T node.link)

(( description
Event Counts and Sequencers for the Transputer

-- This program is an distributed kernel for irplerenting event counts and
- sequenoers on a network of transputers. It should be run at high
- priority in parallel with application program modules. The application
- program modules are linked to the kernel via bidirectional camnnnication
-- channels that are elements of the links charmel array parameter.

{ libraries
#USE "\ecslib\ecssymb tsr"
11}
{ local declarations
[H local abbreviations

VAL =NT num.nodes IS SIZE node.link
VAL INT num.counts IS SIZE count.node
VAL INT no.links IS SIZE links %
VAL IT no.h.links IS 4 :
VAL = T no.s.links IS no.links - no.h.links
})

channel declarations and assignments
- channels for kernel control of the hard/physical corrrunications links
[2*no.h.links]CHAN OF ANY hard.links
PLA hard.links AT 0

IH %
ccmrnications data structures

- basic format of a received caminications header
[6] IT header :
[]fINT short.header IS [header FRM 0 FOR 21
IT action.code IS header[0]:

INT count.id IS header[l]
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IN'T to.node is 17.eader[2]

IN'T to.proc is header[3] a,
INT frcrn.node is header(-;]
INT from.proc is header[5)

INT data.size
- potential fonmts of received data arrays
(MAX.NESSAE.SIZE) BYTE data, array
IN'T count .value RETYPES [data .array FRCM~ 0 FOR 4)
flNT index RETYPES (data.array FRCk4 0 FOR 4] "i

INT seg. size RETYPES [data. array FROM'. 4 FOR 4)

({event count data structures a

-variables to track allocation of shared resources
ThJT node .counts,

base .count,
next, free:

- storage allocation for kernel data structures
(MAX.CCUNTS) INT count .array. indices
(MXNTS .PE.NClE) (4] fl'T count. array:
[MAX .DATA. PE.NC)DE] BYTE node. data:
[MAX.AAIT .QtE.ENTRIES] (4] fl'T node, awaits:
(MAX .APIT . JE. ENTRIES] INT free, list

procedures
PROC buffer.in.link(chan.in,chan.out)

PRCC buffer. in. Link (CHAN OF ANY in. Link, out. link)

({description
-This procedure provides a 'soft' buffer for hard link inpu.t and output.
-This buffer increases the overall throuahput of the node.

({declarations
[MAX .MESSAGE .SIZE) BYT data .array. 0,

data.array.1 a
[6]fl'T header.0, a

header. 1
INT data.size.0,

data.size.1

SEQ
in.link ?header.0; cata.size.0::data.array.0 .

WHIIE TRUE
SEQ

PAR~ n edr.;dt~ieO:dt~ra.
int.link ! header.0; data.size.O::data.array.0

PAR
out.link !header.l; data.size.1::data.array.l
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in.link ? header.0; data.size.O::data.array.0

- - -

PROC buffer.out.link(chan.in,chan.out)

PROC buffer.out.link(CHAN OF ANY in.link, out.link)

description
- This procedure buffers output to hardware camanications links.
- To inprove performance, the buffer is sized to hold one message
- for each process at the node. The buffer is organized in a ring
- configuration. WAFVN3: This ixplementation uses variables

shared between parallel processes. The ring buffer itself, and
- next in and out pointers are shared. When this procedure is run IP.
- at high priority, the sequencing of the code guarantees that
- there will be no access conflicts to these shared structures.
- The purpose for this sharing is that the inplerentation is
- slightly faster under average case loading conditions and is no

worse than a 'normal' request-next-iteh buffer under any conditions.

i declarations p
- a local alternate narre for the systen ii, it used to
- size the buffer
VAL IN buff.size IS MAX.PROC.PER.NCDE

- pointers to positions in the ring buffer
next.in,
next.out

-- define the ring buffer
[buff .size] (61INT header
[buff.size]EiT data.size
[buff.size] [MAX .NESSAG .SIZE] BYTE data.array

-- channels for ccmnnicating between the input and output
- parts of the buffer
CHAN CF ANY wake.in,

wake.out

SEQ
({ initialization
next.in 0
next.out 0

PAR '-V

(f{ buffer input
{ local declarations

INTr buff.no,
any

1ON.
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WHL TFUE
SEQ 

pbuff.no := next.in\buff.size
PRI ALT

-- if the buffer is not full
(next.in < (next.out + buff.size)) & SKIP
SEQ

-- input an item to the buffer
in.link ? header[buff.no]; data.size[buff.no] ::data.array[buff.no]
next.in := next.in + 1
- if the buffer was eapty, let the sleeping output know

(next.in - next.out) = 1
wake.out !NIL

ELSE
SKIP

the buffer is full, go to sleep until item output
wake.in ? any

SKIP

{ do output
( { local declarations
INT buff.no,

any

MHILE TRDE

SEQ
buff.no := next.out\buff.size
PRI ALT

- if the buffer is not erpty
(next.in > next.out) & SKIP •
SEQ

- output a buffered item
out.link ! header[buff.no]; data.size[buff.no] ::data.array[buff.no]
next.out := next.out + 1
- if the buffer was full, wake the sleeping input pr:ocess

(next.in - next.out) = (buff.size - 1)
wake.in ! NIL

ELSE
SKIP

the buffer is enpty, wait for a wake-up after scne input
wake. out ? any

SKIP

({ ( PROC send.packet(header, data.size, data.array)

PROC send.packet (VAL [6] =T header, VAL INT data.size, []BYTE data.array)

({ description
- This procedure packages messages for sending either to a remote node or
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to a local process.
}}}

declarations
-- define subset of overall header for local corrunication
VAL []fIT short.header IS [header FROM 0 FOR 23 :
VAL flT to.node IS header[2] :
VAL INT to.proc IS header[3] :
IF}

I { packet is to local procedure - return it locally
to.node = node.id

links [to.proc] [OUTPUT] ! short .header; data.size: :data.array

{{{ else packet is for remte node - pass it on
ELSE

links [node.link[to.node]] [OUTPUT] header; data.size: :data.array

}}I

{{f PROC process.packet(link.no)

PROC process.packet(VAL INT link.no)

{ description
- This procedure perfoxrs a function based on the value of the action.code
- element in the header of a camunications packet. These functions
- correspond to the basic calls provided by the event counts and sequencers
- procedures (read, advance, await, ticket, put and get).
}}1

IF
{{{ carmand packet requires processing by my node - handle it
(to.node = node.id) AND (to.proc = 0)

{ get characteristics of count oid
INT count. index IS count. array. indices [count. id]
INT current.count IS count.array[count.index] [0]
INT current.ticket IS count.array[count.index] [i]
INT base IS count.array[count.index] [2]
INT head IS count.array[count.index] [3]
1)1
IF

{{ read cormand
action.code = READ.CMD

-- represent the count as an array of bytes
[]B'TE out.count RETYPES current .count :
-- return the value of the count
send.packet ( [READ.REP, count.id, fron.node, fran.proc, node.id, 03,

SIZE out.count, out.count)
}12
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{ advance ccmrand
action. code = ADVANCE.CMD

{ declarations

-- Each time an advance is performed, the waiting process list
-- associated with the target event count is checked to detennine
-- if the advanced count is a waited-for count. If so, a wake-up
-- message is sent to the suspended process.

BOOL rre.to.wake:

SEQ
initialization

-- advance the event count
current count := current count + 1
more.to.wake := TRUE
}}}

WHILE more. to. wake
IF

{{{ no items on the waiting process list
head = NIL

more.to.wake := FALSE
111

check the first item on the waiting process list
ELSE

M abbreviations
- extract the wating process list entries for the f. st item
- on the waiting process list.
INT wait.count IS node.awaits [head] [0]
INT wait.node IS node.awaits[head] [1)
INT wait.proc IS node.awaits[head] [2] .
INT wait.next IS node.awaits(head] [3)

IF
{{{ count reached - wake the first process on the list
wait. count <= current .count

SEQ
(({ send wakeup message
send.packet([AWAIT.REP, count.id wait node, wait.proc,

node.id, 01,
0, data.array)

}}
({{ remove the first item, return array position to free

list
next.free := next.free - 1
free.list[next.free] := head
head := wait.next

count not reached - no more to wake
ELSE 0

more.to.wake FALSE
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( await command
action.code = AAIT.CD

IF
M wakeup if count already reached

count.value <= current .count

send.packet([AWAIT.REP, count.id, frcrn.node, frcrn.proc, node.id, 0], %
0, data.array)

M add to waiting process list if a future count
ELSE

IF
M no roon for an await list entry - send back await fail
next.free = MAX.AWAIT.QUE .ERIES

send.packet( [AMIIT.QUE.FULL, count.id, frcm.node, frcrn.proc,
node.id, 0],

0, data.array)

{ { is roan for an await list entry - add the entry to the await
list

ELSE i

M abbreviations

- extract and abbreviate the await list entries for the
- next available position (from free list)
INT wait.count IS node.awaits[free.list[next.free]] [0]
INT wait.node IS node.awaits[free.list[next.free]l][I
INT wait.proc IS node.awaits[free.list[next.free)] [2]
INT wait.next IS node.awaits(free.list(next.free)) (3] :
HM
SEQ

IF
({ ( handle list empty case
head = NIL

SEQ
wait.next := NIL
head := free.list[next.free]

{ handle insert at head of list case
count.value <= node.awaits [head] [0]

SEQ
wait.next := head

head := free.list[next.free]

{{ handle all other cases
ELSE

({ { declarations
- walk the list to find the proper ordered insertion point
- following local variables track position of the search
INT cursor,

prior %
)}}

SEQ
({{ initialize

prior eahead
cursor node.awaits [head) (3]
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[ scan list
WHILE cursor <> NIL

IF

count.value <= node.awaits[cursor] [0]
cursor := NIL

ELSE
SEQ

prior cursor
cursor node.awaits [cursor] [3]

M]}
{ insert into list

wait.next := node.awaits [prior] [3]
node.awaits [prior] [3] := free.list[next.free]

M build table entry - renove position from free list
wait.count = count.value

wait.node := fram.node
wait .proc: from.proc
next.free next.free + 1
]}}

]]}

}]}

{ ticket command
action.code = TICKET.CD

- transfonm ticket value to byte array for transmission as data
BYTE out.count RETYPES current.ticket :

- send packet and increment the ticket value
SEQ

send.packet([TICKET.REP, count.id, from.node, frm.proc, node.id, 02,
SIZE out.count, out.count)

current.ticket := current.ticket + 1
I}}
[{{ put cmand
action.code = PUT.CD

{ U local definitions
- define the location in the node.data array of shared mermry
- for where to write the transferred data
VAL INT put.base IS base + index
VAL [IBYTE index.array RETYPES index
VAL INT index.size IS SIZE index.array 4
VAL INT put.size IS data.size - index.size
]])
- store the requested data array
[node.data FRCM put.base FOR put.size]

[data.array FROM index.size FOR put.size]
II]
f({ get command

action.code = GET.CMD
- determine the starting location for the read operation
-- in the shared memory segment

VAL INT get.base IS base + index
- send the requested data
send.packet([GET.REP, count.id, fron.node, from.proc, node.id, 0],
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seg.size, [node.data FROL, get.base FOR seg.size)

M)
({ ( else - just pass the mressage on to its destination node

ELSE
send.packet (header, data, size, data, array)

(H PRQC build.packet(link.no)

PROC build.packet (VAL flNT link .no)

U(description
-To reduice the internal node cczminication load, me~ssage headers fran local
-processes include only a subset of the elements used for carrnicating
-between nodes. This procedure 'eypands' a local carrrunications packet
-header into an external packet header.

- - - - --- - -- - -

SEQ
frcrn.node node.id
frrn. proc =link, no
to.node count.nodetcount.id]
to.proc 0

SEQ
({initialization
(finitialize the count .array and count .array. indices

SEQ i - 0 FCR MAX.ONTS
count.array.indices [ii :- NIL

node. counts =0

base.count 0
SEQ i = 0 FOR nu.counts

IF
count.node(i] = node.id

SEQ
-- enter quick lock-up index
count. array. indices [il := node .counts
-- build initial count data
count.array~node.counts] [0) 0
count.array(node.counts] [2. 0
count.array(node.countsl (2) base.count
count.array~ncde.counts) (3) NIL
-- allocate shared memrry segment
node.counts :=node.counts + 1
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base.count base.count + count.size[i]
ELSE

SKIP

{{{ initialize the free list
SEQ i = 0 FOR MAX.AWAIT.QUE.ENTRIES

free.list[i] := i
next.free := 0

}}}

(II run systern
PAR

{ buffer hardware links
PAR link.no = 0 FOR no.h.links

PAR
buffer.in.ink(hard.links [link.no + no.h.links], links [link.no] [INPUT])
buffer.out.link (links [link.no) [OUTPUT], hard.links [link.no])

{ { { onitor carunications
local declarations

-- The ccmmications monitoring procedure uses a 'fair' implerentation
-- of the ALT structure. In general, it provides that if a camunication
-- was just received from one of several channels, that channel will have

the lowest priority for the next execution of the ALT. In this way,
-- no single camrunications channel cam 'starve' access to the kernel
- from the other ccrmnnications channels. The variables defined
- below are used to track the last cctmnicating channel for this

'fair' ALT. Note that hard and soft links are treated separately.

INT last.h, last.s:

SEQ
initialization

last.s 0
last.h 0

WHILE TBUE
PRI ALT

({ handle external hardware links
ALT link.no = 0 FOR no.h.links

links[(link.no + last.h)\no.h.links][INPUT] ? header;
data. size: :data .array

SEQ
process.packet( (link.no + last.h) \no.h.links)
last.h := (no.h.links - 1) + link.no Xr

(( handle local soft links
ALT i = 0 FOR no.s.links

links[((i - last.s)\no.s.links) + no.h.links] (INPUT] ? short.header;
data.size: :data.array

VAL INT link.no IS ((i + last.s)\no.s.links) + no.h.links
SEQ '-

build.packet (link.no)
process .packet (link.no)
last.s i + (no.s.links - 1)
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C READ PROCEDURE

PROC read([2]CHAN OF ANY link,
VAL INT count. id,
INT count. value)

I( description
- This procedure reads and returns the value of the arguxent specified
-- event count.
}}}

M{ libraries
#USE " \ecslib\ecssymrb.tsr"
1}}

{ declarations
- alternalte channel nanes
C{AN OF ANY linkin IS link[O]
CMAN OF ANY linkout IS link[l]

- ccrmnications data structures
(2] lNT short.header
INT data.size :
[]BYTE data.array RETYPES count.value:
}}}

SEQ
- request count value from kernel
linkout ! [READ.C'D, count.id]; 0
- receive count value fron kernel
linkin ? short.header; data.size: :data.array

D. ADVANCE PROCEDURE

PROC advance([2]CHAN OF ANY link,
VAL INT count.id)

({ description

-- This procedure requests that the distributed kernel
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- increrent the specified event counter.

libraries
#USE "\ecslib\ecssyrrb.tsr"

declarations
- alternate name for channel
CHAN OF ANY linkout IS link[l]

- request the advance action
linkout ! (ADVANCE.CMD, count.id]; 0

E. AWAIT PROCEDURE

PRCC await (2CHMAN OF ANY link, S
VAL INT count. id,
VAL INT count.value)

description
- Perform the await function on the specified event count and
- await the argument count value.

- Note that the waiting process table (node.awaits) in the
- kernel that maintains the event count may be full.
- n this case, the kernel returns a tressage to this process
- identifying that this is the case. This procedure then
- waits a period of tirre and retransmits the await request to
- the kernel. If the await request is again rejected due to
- a full waiting process table, the wait tie is doubled before
- retrying the await request. This process will continue until
- either the requested wait-for count is reached or the await
- request is accepted and placed in the kernel's waiting process
- table.
}}}

{ libraries

#USE "\ecslib\ecssymb. tsr"

({ declarations
- alternate channel narmes
CHAN OF ANY linkin IS link0]:
CHAN OF ANY linkout IS link[l]

- comunications data structures
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[2] INT short .header
DlT return. tag IS short.header[O]
VAL ( ]BYTE data. array RETYPES count. value
INT cimuy.size
[41 6-fiE dnmy. array

- structures for controlling retransmit of rejected awaits
TIMER clock :
INT current.tine, wait.time

SEQ
request await fran kernel

linkout ! (AD@IT.CMD, count.id]; (SIZE data.array) ::data.array
- receive reply from the kernel
linkin ? short.header; durmy.size: :duzmmy.array
[H check to see if the await was accepted
IF

return.tag = AWAIT.QUE.FULL
{ wait by binary back-off and retry the await request
SEQ

-- initial wait time (short)
wait.time := 1
WHILE return.tag = AWAIT.QUE.FULL

SEQ
clock ? current.time
clock ? AFTER (current.time PLUS wait.tire)
- set-up the doubled delay tine
wait.time := wait.time * 2
- request await fran kernel
linkout ! fAIT.CMD, count.id]; (SIZE data.array) ::data.array
-- :eceive response from kernel
linkin ? short.header; dmrry.size: :dunry.array

ELSE
If do nothing - await was accepted
SKIP

})}}}

F. TICKET PROCEDURE

PROC ticket ([21CIAN OF ANY link,
VAL INT count.id,
INT count.value)

{ I I description
-- This procedure request a reservation or 'ticket' from the
-- distributed kernel for the specified event count/sequencer.
-- The value of the ticket is returned in the count.value
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-- paramter.

{ libraries
#USE "\ecslib\ecssyrb. tsr"
}}}

M declarations
- alternate channel narmes
CHAN OF ANY linkin IS link[0:
CHAN OF ANY linkout IS link l] .

- comrunication data structures
[21 INT short.header
fNT data.size :
[]BYTE data.array RETYPES count.value

SEQ
_ request ticket frcrn kernel

linkout ! [TICKET.CMD, count.id]; 0
- receive ticket frcrn kernel
linkin ? short.header; data.size: :data.array

G6 PUT PROCEDURE

PROC put([2]CHAN OF ANY link,
VAL INT count.id,

VAL INT index,
VAL [J BYTE data. array)

M { description
- This procedure writes data to the shared naeory segment
- associated with the argument event count. The data array
-- is written offset fran the start of the shared memory
-- segment by the number bytes specified by the index
-- paramneter.

M libraries
#USE "\ecslib\ecssymb .tsr"

{ { { declarations
- alternate channel narre
CQiN OF ANY linkout Is link[l]

- convert the index value to an array of bytes for
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- transmission as data
VAL []BYTE index.array RETYPES index

- identify the size of the data arrays
11%L =x.size IS SZE lndex.array
VAL INT data.size IS SIZE data.array
VAL =T local.size IS index.size + data.size

- define a local array for the data and index value
[MAX.MESS .SIZE + index.size]BYTE localoarray
111

SEQ
- combine the data array and the array representation of
- the index value into a single array
[local.array FRC4 0 FOR index.size) := index.array
(local.array FRC14 index.size FOR data.size] := data.array

request kernel to store the data array
linkout ! [PUT.(MD, count.id]; local.size: :local.array

H. GET PROCEDURE

PRC get([2]CHAN OF ANY link,
VAL INT count. id,
VAL INT index,
[]BYTE data.array)

{({ description
-- This procedure performs a read of the shared me ry
-- segmnt associated with the argument event count.
-- The number of bytes read is determined by the size
-- of the argument data array. The bytes read fran
-- the shared merrory are offset fron the start of the
- shared memory segment by the number of bytes specified
-- in the index pararreter.

( {{ libraries
#USE "\ecslib\ecssyrb. tsr"
I}}

declarations
- alternate name for the channels to kernel
CHAN OF ANY linkin IS link[O]
CHAN OF ANY linkout IS linkl]:

-carrmnications data structures
[2]D"NT short.header
INT data.size
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- define the size and index retrieval parameters as
- an array of bytes for sending as data
.7L [IBY= get.soCs RETYPES (index, SIZE data.array]

VAL INT spec.size IS SIZE get.specs

SEQ
-- request the shared merry read operation
linkout ! [GET.CMD, count.id]; spec.size::get.specs
- receive the results of the read operation
linkin ? short.header; data.size::data.array

'13
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APPENDIX D

SAMPLE PROGRAM USING THE SHARED-MEMQRY INTERFACE

A DESCRIPTION

This appendix provides an example of the methodology employed

to write a program using the shared-memory interface developed for

this thesis. The programming example selected to demonstrate the

methodology is the bounded buffer problem. In this problem, a

producer passes data to a consumer via a bounded buffer or queue.

The buffer serves to "smooth out" variations in the data production

and consumption rates. To add slightly to the single producer

bounded buffer problem, this implementation of the problem will

provide for two producers of data.

B. MODULARIZATION

This particular problem can be naturally subdivided into three

basic modules. Each of these are listed and described below.
1. Producers

Each instantiation of this module generates a continuous

stream of data elements at a specified average rate with some

characteristic random variation in the rate. The data elements

produced are placed in a segment of memory shared with the

consumer of the data. Access to the shared-memory segment is

controlled using an event count and a sequencer. The sequencer

controls the access of the two producers to the buffer. The associated
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event count is advanced when either pwoducer uses its ticket to add

data to the buffer.

2. Consumer

This module continuously removes data elements frohi the

shared memury buffer at a specified average rate with some

characteristic random variation in the rate. The average rate for the

single consumer should be at least equal to the total of the producer's

rates. If not and the consumer can not keep up with the producers,

the buffer will eventually fill and the producers will be forced to

remain idle while waiting for the consumer.

An event count associated with the consumer is advanced

when a data element is removed from the buffer. Note that if the

producer and consumer event counts are initially equal, the number of

data elements in the buffer will be equal to the difference between the

event counts.

C. MODULE CODING

The code for each of the program modules should then be

developed. The following sections provide an abbreviated listing of the

code for the modules.

1. Producers

PROC producer([2]CHAN OF ANY link,
VAL INT in, out)

#USE "\ecslib\ecsproc.tsr" -. the interface library
#USE "globals.tsr" . global constants

INT my.ticket
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[data-.element.size]BY data-.eleent:

WHILE TRUE ,

-- insert code to produce a data element

ticket (link, in, my.ticket)

await (link, in, my.ticket) .
await (link, out,

(my.ticket - data.buffer.size) + 1)
put (link, in,

(my.ticket + ) \data.buffer.size, data.element)
advance(link, out)

2. Consumer

PROC consuer([2]CHAN OF ANY Link, .

VAL at .in in, out)

#USE "\ecslib\ecsproc.tsr" - the interface library :

#USE "globals.tsr" - global constants -'

NTikab emy. count .

[ .tidata.uelefeentsizeBYTE data daele tnnta: t

SEQ .-
my.count := 0 ou)7

WHILE MRE-,
SEQ-

my.coun -my count +
await (link, in, mry.count)

I

get (Link, out, E
my. count\data.buffersize, data. eleent)

advance (link, out) ,

-t insert code for consuming the data element

D. APPORTIONMIENT OF MODULES--

To best demonstrate the nature of the abstracted programming

interface, the apportionment of modules will be done in two different

ways. The first way will assign all modules, shared memory. and event

134

"-



counts to a single Transputer. The second way will distribute the

modules, shared memory, and event counts on three different W

Transputers.

1. Single Transputer

Library aport.tsr

#USE "globals.tsr" -- global constants

- synbolic constants for counts
VAL in IS 0:
VAL out IS 1 :

- count node assignments (which node maintains the count)
VAL count.node IS [0, 01

shared memory segment sizes
VAL count.size IS [0, data.buffer.size] :

- network adjacency matrix to atch particular
- physical configuration. This matrix matches
- a clockwise ring on a B003 board.
VAL node.link IS [[0,2,2,2],

[2,0,2,21,
[2,2,0,2],
[2,2,2,0]]

PROC node0 () - procedure to run on Transputer 0

#USE "\ecslib\ecsproc.tsr" . the interface library
#USE "procs.tsr" - library of procedures
#USE "aport.tsr" . apportionnent structures

VAL INT node.id IS 0 :
[8] [2]CHAN OF ANY links :
CHAN OF ANY pro.one.link IS links[4] :
CHAN OF ANY pro.two.link IS links[5]
CHAN OF ANY consume.link IS links[6] :

PRI PAR
ecs.kernel (links, node. id,

count .node, count .size,
node.link[node.id])

PAR
producer(pro.one.link, in, out)

producer(pro.two.link, in, out)
consumr(consume.link, in, out)
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2. Three Transputers
--

Library aport.tsr

#USE "globals.tsr" - global constants

- symbolic constants for counts
VAL in IS 0:
VAL out IS 1:

count node assignments (which node maintains the count)
VAL count.node IS [0, 2)

- shared mmory segment sizes
VAL count.size IS [0, data.buffer.size]

- network adjacency matrix to match particular
- physical configuration. This matrix matches
- a clockwise ring on a B003 board.
VAL node.link IS [[C,2,2,2],

[2,0,2,2),
[2,2,0,2],
[2,2,2,0]) :

PROC node0 () -- procedure to run on Transputer 0

#USE "\ecslib\ecsproc.tsr" . the interface library
#USE "procs.tsr" -- library of procedures
#USE "aport.tsr" . apportionment structures

VAL INT node.id IS 0
[5] [2]CHAN OF ANY links :
CHAN OF ANY pro.one.link IS links[4]

PRI PAR
ecs. kernel (links, node. id,

count.node, count.size,
node. link [node. id])

producer(pro.one.link, in, out)

P

- - --- -- -- - -- -- - - --- - -- --- -- -

PROC nodel () -- procedure to run on Transputer 1

#USE "\ecslib\ecsproc.tsr" . the interface library
#USE "procs.tsr" . library of procedures

136

4.

r Ir r Ir or' .



#USE "aport .tsr" - apportionrret structures

VALIMTN node.id IS 1
[ 5] (21CHAN OF ANY links:
CHAN OF ANY pro.two.link IS links[4]

PRI PAR
ecs .kernel (links, node. id,

count.node, count.size,
node, link [node. idl)

producer(pro-two.link, in, out)

PROC node2 0) - procedure to run on Transpuiter 2

#USE '\ecslib\ecsproc .tsr" - the interface library
#USE "procs .tsr" - library of procedures
#UJSE "aport .tsr" - apportionnent structures

VAL INT node. id IS 2
[5) [2]CHA OF ANY links

CHAN OF ANY consurre.link IS links (41

PRI PARV
ecs. kernel (links, node. id, %

count.node, Count .size,
node. link [node .id))

constirer (consune .link, in, out)
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APPENDIX E

DETAILED SOURCE CODE FOR THE MESSAGE-PASSING ABSTRACT

INTERFACE LIBRARY

A SYMBOLIC CONSTANTS

... Library ID
{ VAL declarations
{ useful symbolic constants
VAL ELSE IS TRUE :
VAL NIL IS -i:
VAL SarER IS 0:
VAL OUTPUT IS 0
VAL RECEIVER IS 1 :
VAL INPUT IS 1
III
I { I system limits
-- define the mxirmzn ccamunications data array size
VAL MAX.MESSAGE.SIZE IS 1024 :

- define the maxinum nuber of system nodes

VAL MAX.NaDES IS 16

- define the maxi=xn number of global channels
VAL MAX.CHANS IS 256

- define the mazimm nunber of channels per node
VAL MAX.PR0C.PER.NODE IS 40 :

-- define the mrazirma number of processes per node
VAL MAX.CHAN.PER.NODE IS 40
I}}
{ packet tags used during initialization

VAL IIT.START IS 1
VAL START.ACK IS 2 :

VAL INIT.DATA IS 3
VAL DATA.ACK IS 4

VAL INIT.STOP IS 5
VAL STOP.ACK IS 6

VAL INIT.QUIT IS 9 :
I}I
{ packet tags used during cam-unicationVAL RECEIVER.READY IS 7

VAL SEND IS 8:
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}}}

}I}

B KERNEL PROCEDURE

PROC csp. kernel (VAL IT node. id,
VAL []INT node.link,
VAL (] (2flINT chan.map,
[]CHAN OF ANY loc.chan)

description
This procedure is the distributed kernel for a nessage passing

- based model prograrmig interface. This procedure should be
- executed in parallel with application program modules using the
- interface. This procedure should be run at high priority and

- the application modules run at low priority.
}}}

M libraries
#USE "cspsyrb.tsr"

M{ declarations
M local abbreviations

VAL UU~ no. h. Links IS 4
VAL INT no.s.links IS SIZE chan.nap
VAL INT no.l.chan IS SIZE chan.nrap
VAL IDT no.links IS no.h.links + no.s.links
VAL INT num. nodes IS SIZE node. link
}}}

{ channel declaration and placement
[no.h.links*2]CHAN OF ANY hard.links:
PLAE hard.links AT 0

[MAX.CHAN.PER.NCDE] (2]CHAN OF ANY links:

ccraunications data structures
-- definition of the ccrminications header parts
[3] IT header :
INT header.action.code IS header[Ol
INT header.to.node IS header([] :
INT header.gchan IS header[2] %,-

-- definition of the cormnications packet data segment.
INT data.size
(MAX .MESSAGE . SIZE] BYTE data.array :

{ channel mapping data structures ',-1

kernel data structures for cambnications routing and
-- manage nt
[MAX.CHANS] (2] I gchan.node,
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gchan. lchan
[MAX. HANSJ INT lchan. gchan
1)}

{ procedures

(U{ PRCOC get.local(local, return)

PROC get.local (CHAN OF ANY local, return)

{ description
- This procedure broadcasts local channel map data
- to all nodes for network global structure
- initialization
111

if( declarations
- for receiving acknowledge of rerote broadcast
INT acknowledge
}}

SEQ
{I hmadcast start signals

Open a path to all nodes in the system.
- Inte=ediate nodes receiving these start
- tokens and relaying them will not shut-down

until a corresponding stop token is received.
SEQ to.node - 0 FCR nun.nodes

IF
to.node < node.id

SEQ
local ! [INIT.START, to.node, node.id]; 0
return ? acknowledge

ELSE
SKIP

({ broadcast all local link data
- scan the channel map and build the local structures
SEQ chan.no = 0 FOR no.l.chan

{ local abbreviations
VAL []INT global.ident RETYPES chan. mp[chan.no]
VAL []BYTE ident.array RETYPES chan.map(chan.no]
VAL INT global.chan.id IS global.ident[O]
VAL INT chan.mode IS global.ident[l]
VAL IT link.no IS chan.no + no.h.links
}}}

SEQ
-- build local data structures
gchan.node[global.chan.id] [chan.mode] node.id
gchan.lchan(global.chan.id] [chan.mode] link.no
lchan.gchan[link.no] := global.chan.id
-- broadcast to other nodes
SEQ to.node = 0 FOR num.nodes

IF
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to.node <> node.id
SEQ
local [INIT.DATA, to.node, node.id]; 8::ident.array
return ? acknowledge

ELSE
SKIP

( broadcast done signals
- notify other nodes that done with init transmission
SEQ to.node = 0 FOR nun.nodes

IF
to.node 0 node.id

SEQ
local [INIT.STOP, to.node, node.id]; 0
return ? acknowledge

ELSE
SKIP

{ send local quit signal
- notify that local transmissions over
local ! [INIT.QUIT, node.id,node.id]; 0

{ PROC get.remote(r wte, return)

PROC get.remote (CHAN CF ANY remte, return)

if[11 description
- This procedure inputs remote nodes' channel map data -

- to all nodes for network global structure %
- initialization N

local declarations
(3] INT header : 11
INT init.code IS header[0] :
INT to.node.id IS header~l]
INT frcm.node.id IS header(2]

INT data.size
(2] INT global.ident
I BYME ident .array RETYPES global. ident

INT global.chan.id IS global.ident[0] :1
INT chan.mode IS global.ident[i:

INT quit.count
}}}

SEQ
{ initialize

will receive at least 2 ressages from every other node
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quit.count := 2*(nun.nodes - 1)

MILE quit.count > 0
ALT link.no = 0 FOR no.h.links

-- get a message from somewhere

links[link.no]([INPUT] ? header; data.size::ident.array
IF

( for my node, process it
to.node.id = node.id

sEQ
to.node.id := fron.node.id

- categorize and act on message
IF

( { { start message
init.code = INIT.START

-- acknowledge message to remote node

init.code := START.ACK
remote ! header; data.size::ident.array

(i start ack
init.code = START.ACK

-- let local process know the ack rec'd
return ! NIL

{ ( data message
init.code = INIT.DATASEQ

gchan.node[global.chan.id] [chan.node] := frcm.node.id
acknowledge message to remote node

nit .ccde :- DATA."X
remote ! header; data.size::ident.array

({ data ack
init. code = DATA.ACK

- let local process know the ack rec'd
return !NIL A

Mif stop message
init.code = INIT.STOP

SEQ
-- one less message to get from a remote node
quit.count := quit.count - 1
-- acknowledge message to remote node
init.code := STOP.ACK
remote ! header; data.size::ident.array

{ stop ack
init.code = STOP.ACK

SEQ
-- one less message to get from a remote node
quit.count := quit.count - 1
--- let local process know the ack rec'd

return NIL

O,
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f}

({ { for a different node, forward it
ELSE

SEQ
rerote ! header; data.size::ident.array

init.code = INIT.START

-- reserve a path for the sender
quit.count : quit.count + 1

init.code = START.ACK
S=I

init.code = INIT.DATA
SKIP

int. ccde - D~ATA.ACK

init.code = INIT.STOP 10
SKIP

init.code = STOP.ACK
- done with pass-thru reservation
quit.count := quit.count - 1

ELSE
SK

{ send local quit signal
- done with remote receives
remote ! [INIT.QJIT, node.id, node.id]; 0

PROC multiplex (local, remote)

PROC rrltiplex(CHAN OF ANY local, remote)

{f{ description
- This procedure tultiplexes locally generated initialization
- messages and 'pass-through' initilization messages onto
-- the hardware cormanication links

local declarations
-- packet header definition

[3] NT header
INT init.code IS header[O.
INT to.node.id IS header(l]

-- init packet data
fINT data.size
[2]INT global.ident
[]BYTE ident.array RETYPES global.ident

-- local flags
BOOL local .done,
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reote.done

SEQ
(M initialize
local.done FALSE
remote.done = FALSE
}])
MILE (NOT local.done) OR (NOT raiote.done)
PRI ALT

f { U rerotely generated messages
(NOT remote.done) & remote ? header; data.size: :ident.array

IF

init. code = INIT.QUIT
rerote.done := TRUE

ELSE
links [node.link(to.node.id ][OUTPUT) ! header;

data.size: :ident.array
III
(( locally generated ressages

(NOT local.done) & local ? header; data.size::ident.array

init.code = INIT.QUIT
local.done := TRUE

UJSE
links[node.link(to.node.id] [OUTPUT) header;

data.size: :ident.array
11)

{ f PROC nap.out(local.link,local.chan)

PROC map.out([2]CHAN OF ANY local.link,

CHN OF ANY local.chan)

{ description
-- Perfon the data transfers needed to connect the output
-- end of a global channel to the receiving local channel A.

{ declarations
-- alternate nale for the local bidirectional channel
CHAN OF ANY link.in IS local.link[OJ
CHAN OF ANY link.out IS local.link[l]

-- for receiving signal to start transmission
INT any: 

-- data structure for transmitted message
INT data.size
[MAX.MESSAGE.SIZE] BYTE data. array

144



WHILE TRUE

SEQ

know that receiver is ready to receive
link.in ? any
-- get the transmitted data

local.chan ? data.size::data.array
send the data via the kernel

link.out ! SEND; data.size: data.array

(If PROC map.in (local.link,local.chan)

PROC map.in( [2]J ANOF ANY local.link,
CHAN OF ANY local.chan)

{H description
-- Perform the data transfers needed to connect the input
-- end of a global channel to the transmitting local channel

f { declarations
- alternate names for the local channels
CHMN OF ANY link.in IS local.link[O :
CHAN OF ANY link.out IS local.link[l]

-data structure for received data
flNT data.size
[MAX.MESSAGE.SIZE] BYTE data. array
}}}

WHILE TRUE

SEQ
-- identify to the kernel that the process is ready to receive
link.out ! RECEIVER.READY; 0
-- receive the transmitted data fran the kernel
link.in ? data.size::data.array
-- send data to the application
local.chan ! data.size::data.array

{ PROC buffer. link (chan. in, chan.out)

PROC bufferlink(CHAN OF ANY in.link, out.link)

( description
-- This procedure provides a buffer for hard link input.
-- This buffer increases the overall throughput of the node.
I}}
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( declarations
(MAX .MESSAGE.SIZE] BYTE data.array. 0,

data.array.l
[3]INT header.0, %

header.1 'N
n~T data.size.0,

data.size.l

1))

in.lnk ? header.O; data.size.O::data.array.0

WHILE TRUE
SEQ

PAR
out.link ! header.0; oata.size.0::data.array.O
in.link ? header.l; data.size.l::data.array.l 

PAR
out.link header.0; data.size.l::data.array.0
in.link 7header.Q; data.size.0::data.array.0

{ { PROC build packet (link .no)

PROC build.packet (VAL INT link.no)

{ description N,
Based on the local channel sending the rressage to the kernel,

-- construct an internode camunications packet.

SEQ

- identify the global channel being used
header .gchan ichan .gchan [link. no]
- find the node to which the packet is to be routed
IF

header, action, code = RECEIVER. READY
header.to.node = gchan.node[header.gchan] [OUTPUT]

header.action.code = SED
header.to.node := gchan.node(header.gchan] [INPUT]

ELSE
header.to.node node.id

---- - ---- P -C -r -e- ac e -l no ------- - -'

If( PROC process.packet(link.no)9

PROC process.packet(VAL INT link.no)

If( description
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-- This procedure perfonns caumunications routing and maintains
-- synchronizaticii between the sending and receiving processes
-- by sequiencing corrrrnications between the local and remoute
-- processes.

IF
{({ packet for this node
header.to.ncde = node.id

IF
header, action .code = IPECIVER. PEADY

-let the sender kniow that receiver is ready -

links [gchan.lchan [header.gchan) [OUTPUT]) [OUTPT]TSN
header. action .code = SEND

-pass on the data packet to its destination
links [gchan .lchan [header .gchan] [flPUT] I (OTPUT) 97

data.size: :data .array

if[ packet for other node - forward it
ELSE

links~node.link[header.to.node]] [OUTPTr] header; data.size: :data.array

PAR 1
buffer hardware links I

PAR link.no = 0 FOR no.h.links .

PAR
buffer lin (ar. ink [in. o no h links], lik[iink.noj [flqPUT],

buffer.link (links [link.nol [OUTPUT), hard.links [link.no])

SEQ Ik
({{initialization W

M intalz kenldtsrcue

SEQ i = 0 FOR NAX.CHANS
SEQ

lchan.gchan[i] :=NIL

gchan.nodefi) [NIL,NIL)
gchan.lchan~i] [NTL,NIL)

query local chiannels to build data structures
M( declare local channels for initializatiuji

CH~AN OF ANY local,
rentote,
return

PAR
get. local (local, return)
get. remote (rerrote, return) A

trultiplex (local, remrote)
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PAR
( { build m-apping processes
-- Create the channel controller processes to connect the
-- local channels to global channel ends
{ {{ local declarations
TIMER clock:
INT time:

SEQ
{If wait for init messages clear the network
- This is a cobble to correct a problem with one
-- node ccrpletinig initialization and sending a 'real'
-- message that is not properly handled by a node
-- that has not yet been initialized. Just wait for
-- a long tine for the initilization rressages to
-- clear the network
clock ? time
clock ? AFTER time + 5000000 -- wait 5 seconds

PAR chan.no = 0 FOR MAX.CH1.?PER.NODE
IF -- this channel is among those declared

chan.no < no.l.chan
IF -- input or output global channel end

chan.nap[chan.no] [1 = INPUT
map.in (links [chan.no+no.h.links , loc.chan[chan.no])

ELSE
map. out (links [chan.no+noc h. links), loc. chan [chan. no])

ELSE
SKIP

}}
o{ nitor carmunications

-- accept input from channel controllers or from hard links
{ { { local declarations

-- The cormunications onitoring procedure uses a 'fair' implementation
-- of the ALT structure. In general, it provides that if a carrunication
-- was just received fran one of several channels, that channel will have

the lowest priority for the next execution of the ALT. In this way,
-- no single comruications channel cam 'starve' access to the kernel
-- from the other cormnications channels. The variables defined

below are used to track the last crrmnicating channel for this
-- 'fair' ALT. Note that hard and soft links are treated separately.

INT last.h, last.s:
}l
SEQ

{ initialization
last.s := 0
last.h := 0

WHILE TRUE

PRI ALT
{{ handle external hardware links
ALT link.no = 0 FOR no.h.links

148

% N N



llnks(Clink.no + last.h)\no.h.links] [flPUT) header;

SEQ data.size: :cata.array

process.packet ((link.no + last.h) \no.h.links) .
last.h :=(no.h.links - 1) + link.no

handle local soft links
ALT i = 0 FOR no.s.links

links((Ui + last.s)\no.s.inks) + no.h.linksl[NPT ?npr 2*%
header.action .code;

data.size: :data.array
VAL =li link.no IS ((i + last.s)\no.s.links) + no.h.links
SEQg

build.packet (link, no)
process .packet (link.no)
last.s I+ (no.s.links - 1)
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APPENDIX F

SAMPLE PROGRAM USING THE MESSAGE-PASSING INTERFACE

A. DESCRIPTION

This appendix provides an example of the methodology employed

to write a program using the message-passing interface developed for

this thesis. The programming example selected is the same bounded

buffer problem used in Appendix D to demonstrate programming with S

the shared-memory interface. This problem consisted of two produc-

ers and one consumer with a bounded buffer or queue between them.

B. MODULARIZATION

The modularization of the bounded buffer problem for program-

ming under the message-passing interface is similar to that specified

for programming with the shared memory interface. As with the

shared memory modularization, the producers and consumer are indi- "-

vidual modules. However, with the shared memory interface, the

buffer between the producers and consumer is a natural consequence

of the memory shared between the modules. In the message-passing

scheme, however, this buffer must be defined and coded as a separate

module.

1. Producers

Each instantiation of this module generates a continuous

stream of data elements at a specified average rate with some charac-
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teristic random variation in the rate. The data elements produced are

output to a buffering process via a global communications channel.

2. Consumer

This module continuously attempts to input data elements

from a global communications channel. Data elements input are con-

sumed at a specified average rate with some characteristic random

variation in the rate. The average rate for the single consumer should

be at least equal to the total of the producer's rates. If not and the

consumer can not keep up with the producers, the buffer will eventu-

ally fill and the producers will be forced to remain idle while waiting

for the consumer.

3. 

Noffe

This module inputs communications from two global channels

and queues the input data elements for output on a third global com-

munications channel. Internally, this buffer should exhibit first-in,

first-out queue characteristics.

C MODULE CODING

The code for each of the program modules should then be devel-

oped. The following sections provide an abbreviated listing of the

code for the modules. a

1. Producers

PRO( producer(CHAN OF ANY output)

#USE "\csplib\cspproc.tsr" . the interface library
#USE "globals.tsr" . global constants
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[data.elenent. size] BYTE data. element

WHIIE TRUE
SEQ

-- insert code for producing a data elenent

output ! data.elenent

2. Consumer

PROC consumer (CHAN CF ANY input)

#USE "\csplib\cspproc.tsr" - the interface library
#USE "globals.tsr" - global constants

[data.element.size]BYTE data.elerent

WHIE TRUE
SEQ

input ? data.elenent

insert code to consnre data elerent

PROC buffer(CHAN OF ANY buff.in.1, buff.in.2, buff.out)

- Note, procedure written in a manner to illustrate saoe
- features of the O0CAM programing language; not for
- efficiency

#USE "\csplib\cspproc.tsr" . the interface library
#USE "globals.tsr" . global constants

[buffer.size]CHAN OF ANY buff.chan

PAR

_ accept input fran either producer
[data.element.size]BYTE data.element
WHILE TPUE

ALT

buff.in.l ? data.elerrent
buff.chan[O] ! data.elefent
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buff .in. 2 ? data.elenrent
buff.chan(0] ! data.element

- buffer the input
PAR i = 0 FOR buffer.size - 1 S

[data.element.size]BYTE data.elerrent
WHILE TRUE

SEQ
buff .chan[i ? data.element
buff.chan[i + 1 ! data.elenent

- end from the buffer
[data. elerent. size] BYTE data.element
WHILE TRUE

SEQ
buff.chan[buffer.size - 1 ? data.elerent
buff.out ! data elerent

w

D. APPORTIONMENT OF MODULES

As is done for the shared-memory interface, the apportionment of

modules for the message-passing interface is done in two different

ways. The first way will assign all modules to a single Transputer. The

second way will distribute the modules on four different Transputers.

L Single Transputer .

Library aport .tsr

#USE "globals.tsr" - global constants

- syrbolic constants for global channels
VAL prol.global IS 0
VAL pro2.global IS 1
VAL con.global IS 2 :

- network adjacency matrix to match particular
- physical configuration. This matrix matches
- a clockwise ring on a B003 board.
VAL node.link IS [[0,2,2,2],

[2,0,2,2),
[2,2,0,2],
[2,2,2,0)]

-------------------------------.----------- ~ .

PROC node0 () -- procedure to run on Transputer 0
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#USE "\csplib\cspproc .tsr" -the interface library
#USE "procs tsr" -- library of procedures
#USE "aport tsr" -- apportiorrent structures

VAL INT node.id IS 0
VAL (][2]INT chan.map IS [[prol.global,SENDER],

[pro2 .global, SENDEIR], t

[pro2.global, PE=I1,
[con -global, SEDER],
[con.glcbal.REETVER]]

(SIZE chan.mrap]CHAN OF ANY loc.chan
-- abbreviations for convenience only
CH-AN OF ANY pro.one.out IS loc.chan[0)
Cl-IA OF ANY buffin.one IS loc.chan[l]
CHAN~ OF ANY pro.two.out IS loc.chan[2]
CH-AN OF ANY buff~in.two IS loc.chan[3]
CHAN OF ANY buff.out IS loc.chan[4]
CHAN OF ANY con.in IS loc.chan[5]

PRI PAR
csp.kernel(node.id, nodelink~noe.id],

chan.rnap, loc. chan)
PAR

producer (pro .one .out)
producer (pro .two out)
buffer (buff. in .one, buff .in. two, buff, out)
consirer (con .in)

2. Four Trans~uters

Library aport ,tsr

#USE "globals .tsr" -- global constants

- synbolic constants for global channels
VAL prol.global IS 0
VAL pro2.global IS 1
VAIL con.global IS 2

- network adjacency matrix to match particular f

- physical configuration. This matrix m-atches
- a clockwise ring on a B003 board.
VAIL node.link is [[0,2,2,2],

[2,0,2,2],
[2,2,0,2], ft

[2,2,2,0]]
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PRCC nodeO () - procedure to run on Transpimter 0

#USE "\csplib\cspproc tsr" -- the interface library
#USE "procs .tsr" -- library of procedures
#USE "aport tsr" -apportionment structures

VAL flNT node.id IS 0:
VAL (2] fl'T chan.xnap IS ([prol.giobal, SENDER]]

(SIZE chan.mnap]CHAN OF ANY loc.cban:
-abbreviation for convenience only

CHAN OF ANY pro.one.out IS loc.chan[0]

PRI PAR
csp .kernel (node. id, node, link [node. id],

chan.rnap, loc.chan)
producer (pro .on Out) -

PROC2 nodel () -- procedure to run on Transputer 1

#USE "\csplib\cspproc .tsr" -- the interface library
#USE "procs .tsr" -library of procedures
#USE "aport .tsr" -apportionment structures

VAL INT node.id. IS 1:
VAL. (1 (2) IM~ chan.map IS [[pro2. global, SENDER]]

[SIZE chan.map]CHAN OF ANY loc.chan
-abbreviations for convenience only

CHAN OF ANY pro.two.out IS loc.chan[0)

PRI PAR
csp .kernel (node. id, node. link [node. id],

chan .rap, loc .chan)

p.-oducer (pro .two.out)

PROC node2 () -- procedure to run on Transpuiter 2

#USE "\csplib\cspproc .tsr" -- the interface library
#USE "procs .tsr" -- library of procedures

#USE "aport .tsr" -apportionrent structures

VAL INT node.id IS 2
VAL [][2]IN'T chan.rnap IS [[prol.global,ECEIVER),

(pro2 .global, PECEIVER,
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[SIZE chan-riap]CHAN OF ANY loc.chan

-- abbreviations for convenience only
CHAN OF ANY buff.in.one IS loc.chan[O]
CHAN OF ANY buff.in.two IS loc.chan[I]
CHAN OF ANY buff.out IS loc.chan(2)

PRI PAR
csp.kernel(node.id, node.link~node.id],

cban.rnap, loc.chan)
buffer(1xuff.in.one, buaff.in.two, buff .out)

PPLW node30( procedure to run on Transputer 3
- - - - - - - ---

#USE "\csplib\cspproc tsr" -the interface library
#USE "procs .tsr" -- library of procedures
#USE "aport tsr" -- apportionrrnt structures

VAL INT node.id IS 3:
VAL [I [2)flNT chan.ffap IS [[con.glc133,-1v~iI] P

[SIZE chan.map]CHAN OF ANY loc.cban%
-- abbreviations for convenience only
CHAN OF ANY con.in IS loc.chanOJ

PRI PAR
csp. kernel (node. id, node, link [node. id],

chan.rnap, loc.chan)
consumer (con. in)
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